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1. Introduction

The emphasis on renewables, such as the goal set by the Department of Energy to have 20 percent

of electric power from wind by 2030, has raised the importance of efficiently managing wind, and

understanding the factors that affect the cost of using wind. Currently, wind energy accounts for a

small fraction in the market and the grid operators allow the wind energy producers to deliver any

amount of energy they produce at a given time. However, as the share of wind energy in the market

grows, such a policy will become impractical, and grid operators will need to make commitments on

the amount of wind energy that will be delivered in advance. Unfortunately, making commitments

is complicated by the inherent uncertainty of wind. This uncertainty can be mitigated by the

presence of storage, which also introduces the dimension of losses due to the conversion needed to

store and retrieve energy.
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We address the problem of making a commitment at time t to deliver energy from wind during

the time interval [t, t+ 1) . The model is most easily applied in the hour-ahead market, although

it can be used in an approximate fashion in the day-ahead market. Energy storage has long been

recognized as an important technology for smoothing the variability of wind (Castronuovo and

Lopez (2004), Korpaas, et al. (2003), Garcia-Gonzalez, et al (2008), Brunetto and Tina (2007),

Ibrahim, et al. (2008)). We assume that we store energy when the available energy from wind

exceeds the commitments we have made, but we may incur significant conversion losses. The prob-

lem has cosmetic similarities with classical inventory problems (storing product to meet demand),

but with some fundamental differences. Inventory problems are typically trying to control the

supply of product to meet an exogenous demand (Axsäter (2000), Zipkin (2000)). In our problem,

we have exogenous supply (energy generated from wind) to meet demand by making advance com-

mitments. This problem is similar to the reservoir management problem which is characterized by

random rainfall (see Nandalal and Bogardi (2007) for an excellent review of dynamic programming

models for reservoir management). Our problem is distinguished by the need to make advance

commitments, along with our interest in a simple, analytical solution that can be used in economic

models.

In this paper, we derive an optimal policy for making energy commitments from wind in

the presence of an energy storage device. We then use this policy to study the economics of storage

capacity in this setting. Given the richness of the application, we analyze a stylized version of

the problem, which allows us to derive the optimal policy in a simple, analytic form. Our model

captures some important dimensions of the real problem such as the storage capacity constraints,

storage conversion losses and a mean-reverting process for real-time electricity prices. At the same

time, we make a number of simplifying assumptions. Some of these include:

• We assume that we are a small player in a large market, making it possible to sell all of the

energy we produce as long as we make advance commitments. In addition, we assume that if the

energy from wind (plus what is available in storage) falls below our commitment, that we can make

up the entire shortfall using the current spot price.
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• If the model is applied in a day-ahead market, we ignore the ability to make hour-ahead

adjustments.

• We capture storage capacity and conversion losses, but we otherwise ignore the physics of

energy storage, such as the relationship between the rate of storage and storage capacity, and the

impact of full discharges on battery life.

• We assume mean-reverting electricity prices and stationarity in the errors in wind forecasts.

• Our analytical model assumes that wind follows a uniform distribution, although we then

quantify this error in experimental comparisons using actual wind patterns.

More realistic models require an algorithmic solution. A goal of our research is a simple policy that

can be used in economic models without requiring the complex machinery of stochastic optimization

algorithms.

The goal of a wind farm operator is to maximize the cumulative profit over time by com-

puting the amount of electricity to commit to sell during the time interval [t, t+ 1) at each time t.

Brown and Matos (2008), Brunetto and Tina (2007), Castronuovo and Lopez (2004), and Korpaas,

et al. (2003) attempt to solve the problem by solving a deterministic optimization problem given a

particular sample path over a finite horizon and then averaging the results over the sample paths.

The sample paths are drawn from a fixed (T +1)-dimensional distribution describing the electricity

generated from the wind farm during the time interval [t, t+ 1) for each t= 0,1, ..., T. However,

this approach does not produce a valid, admissible policy. In practice, we need a policy that allows

the wind farm operator to compute at time t the amount of electricity to commit to sell during

the time interval [t, t+ 1) based on the state of the environment at time t. The objective of this

paper is to find such a policy and analyze it.

The contributions of this paper are as follows. 1) We derive an analytical expression for an

optimal policy, and the value of storage, for a stylized model of an energy storage process in the

presence of intermittent generation requiring advance commitments. 2) We establish assumptions

on the electricity price and the distribution of wind, size of the storage, and the decision epoch

intervals that allow us to derive the optimal policy for energy commitment in a closed form and
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explain the implications of those assumptions. 3) Under those assumptions, we derive the optimal

policy for advance energy commitment in a simple, analytical form, when we have a storage with an

arbitrary round-trip efficiency, and when electricity prices are mean-reverting. The optimal policy

obtained under such assumptions resembles the optimal policy for the well-known newsvendor

problem (Khouja (1999), Petruzzi and Dada (1999)). 4) We obtain the stationary distribution of

the storage level corresponding to the optimal policy, from which we find the economic value of the

storage as the relative increase in the expected revenue due to the existence of storage. 5) We test

our policy using wind energy generated from truncated Gaussian distributions and demonstrate

that the error introduced by assuming a uniform distribution for wind is reasonably small.

This paper is organized as follows. In §2, we model the wind energy storage problem as

an MDP with continuous-state and control variables. In §3, we present our assumptions and the

structural properties of the optimal value function of the MDP. In §4, the optimal policy for the

infinite horizon problem for a storage with general round-trip efficiency is obtained. Then, the

stationary distribution of the storage level corresponding to the optimal policy is obtained, from

which the economic value of the storage as the relative increase in revenue due to existence of

storage, is derived. In §5, we compute the economic value of storage using the wind speed data

obtained from the North American Land Data Assimilation System (NLDAS) project (Cosgrove,

et al. (2003)), and the electricity price data provided by a utility company. In §6, we summarize

our conclusions.

2. The model

Operating a wind farm depends on two markets: the electricity spot market and the regulating

market. We sell to the spot market and pay a penalty when we fail to meet our commitment.

The grid operator buys energy from the regulating market when we fail to meet our commitment.

In the spot market, the energy producers make their commitments to deliver (sell) electricity in

advance while the regulating market is a marketplace for reserve energy in which the producers

have the ability to sell electricity on a shorter notice than the spot market (Korpaas, et al. (2003),



Kim and Powell: Optimal Energy Commitments with Storage and Intermittent Supply
Article submitted to Operations Research; manuscript no. OPRE-2009-09-406 5

MacKerron and Pearson (2000), Morthorst (2003)). As a wind farm operator, when the electricity

production exceeds our expectation and we have an excess amount of electricity left over after

fulfilling the contractual commitment, we store the excess amount. On the other hand, when

the electricity production falls too short to meet the contractual commitment, we have to pay a

premium, a penalty for failing to meet the commitment, while the producers in the regulating

market make up for the gap. Therefore, if we commit too much, we can actually lose money.

We have revenues from our sale on the spot market and costs from tapping into the regulating

market when we fail to meet our commitment for delivery on the spot market (see Chapter 16 of

MacKerron and Pearson (2000) for a detailed exposition of the market system).

At each time t, the market participants submit their bid for the supply and demand for

electricity that must be delivered during the time interval [t, t+ 1). The market overseer collects

the bidding information and determines the spot market and the regulating market price for the

time interval [t, t+ 1) shortly after the participants submit their bids. Therefore, as a wind farm

operator, we do not know what the prices will be when we are making our commitments.

We make the following assumptions. First, we assume that at each time t, we have a prob-

ability distribution of the electricity we will generate during the time interval [t, t+ 1). Second,

we assume that we are a small participant in the market such that the market can always absorb

our supply and the effect of our bidding on the expected spot market and the regulating market

prices of the electricity is negligible. Then, the prices can be treated as exogenous variables and

we only need to determine the amount of electricity to commit to sell. Third, we assume that the

spot market price of the electricity is mean-reverting and the ratio of the expected spot market

price over the expected regulating market price is always less than the round-trip efficiency of our

storage with the discount factor. Otherwise, the cost of using the storage, which can be measured

by the conversion loss, will be greater than the expected cost of tapping into the reserve energy in

the regulating market, negating the purpose of using a storage device in the first place. The third

assumption is crucial in maintaining the concavity of the optimization problem.
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2.1. System Parameters

Rmax = upper limit on the storage. (unit: storage energy capacity unit)

ρR = coefficient used to convert the generated electricity to potential energy in the storage. (unit:

storage unit / electricity unit)

ρE = coefficient used to convert the potential energy in the storage to electricity. (unit: electricity

unit / storage unit)

Note that 0< ρEρR < 1, where ρEρR denotes the round-trip efficiency. Throughout this paper,

1−ρEρR is referred to as the conversion loss from storage. ρRρE is around 0.6−0.8 for most of the

existing storage systems (Sioshanshi, et al. (2009)).

µp = mean of the spot market price of the electricity. (unit: dollar / electricity unit)

σp = standard deviation of the change in spot market price of the electricity. (unit: dollar /

electricity unit)

κ= mean-reversion parameter for the spot market price of the electricity. κ is proportional to

the expected frequency at which the spot market price crosses the mean per unit time. (unit: 1 /

time unit)

∆τ = time interval between decision epochs.

m= slope of the penalty cost for over-commitment.

b= intercept of the penalty cost for over-commitment. (unit: dollar / electricity unit)

That is, when the spot market price of the electricity is pt, the penalty for over-commitment is

mpt + b.

µY = mean of the electricity generated from the wind farm per unit time. (unit: electricity unit

/ time unit)

σY = standard deviation per unit time of the electricity generated from the wind farm. (unit:

electricity unit / time unit)

γ = discount factor in the MDP model. 0<γ < 1.
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2.2. State Variables

Let t ∈ N+ be a discrete time index corresponding to the decision epoch. The actual time corre-

sponding to the time index t is t∆τ.

Rt = storage level at time t. 0≤Rt ≤Rmax,∀t.

Yt = electricity generated from the wind turbines during the time interval [t− 1, t) . Yt ≥ 0, ∀t.

pt = spot market price for electricity delivered during the time interval [t− 1, t). pt ≥ 0, ∀t.

Wt =
(
(Yt′)1≤t′≤t , pt

)
= exogenous state of the system.

St = (Rt,Wt) = state of the system at time t.

2.3. Decision (Action) Variable

xt = amount of electricity we commit to sell on the spot market during the time interval [t, t+ 1)

determined by signing the contract at time t. xt ≥ 0.

Since we are making an advance commitment, xt is not constrained by Rt. The lack of an upper

bound on xt indicates that we are a small player in the market and hence there will always be enough

demand in the market to absorb our supply as long as we are making an advance commitment.

2.4. Exogenous Process

ŷt = noise that captures the random evolution of Yt. Specifically,

Yt+1 = µY ∆τ +
M−1∑
i=0

αi (Yt−i−µY ∆τ) + ŷt+1, (1)

for some order M and coefficients αi for 0≤ i≤M − 1. (ŷt)t≥1 and (Yt)t≥1 must be proportional

to 4τ.

p̂t = noise that captures the random evolution of pt. Specifically, we use a discrete-time version

of the Ornstein-Uhlenbeck process:

pt+1− pt = κ (µp− pt)4τ + p̂t+1.

Let Ω be the set of all possible outcomes and let F be a σ-algebra on the set, with filtrations Ft

generated by the information given up to time t :

Ft = σ (S0, x0, Y1, S1, x1, Y2, S2, x2, ..., Yt, St, xt) .
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P is the probability measure on the measure space (Ω,F) . Throughout this paper, a variable with

subscript t is unknown (random) at time t− 1 and becomes known (deterministic) at time t. In

other words, a variable with subscript t is Ft-measurable. We have defined the state of our system

at time t as all variables that are Ft-measurable and needed to compute our decision at time t.

2.5. Storage Transition Function

Rt+1 =


Rmax, if Rt + ρR (Yt+1−xt)≥Rmax.

Rt + ρR (Yt+1−xt) , if xt <Yt+1, Rt + ρR (Yt+1−xt)<Rmax.
Rt− 1

ρE
(xt−Yt+1) , if Yt+1 ≤ xt <ρERt +Yt+1.

0, if xt ≥ ρERt +Yt+1.

(2)

If Yt+1 exceeds the commitment xt, we store the excess amount Yt+1−xt with a conversion factor,

ρR. If Yt+1 is less than xt, the potential energy in the storage must be converted into electricity with

a conversion factor, ρE, to fulfill the gap, xt−Yt+1. If the amount of electricity generated during the

time interval [t, t+ 1) plus the electricity that can be obtained by converting the potential energy

in the storage is not enough to cover the contractual commitment, we deplete our storage and

we have to pay for the gap. It is important to note the difference between the storage transition

function shown above and the transition functions that generally appear in traditional inventory

management and resource allocation problems (Axsäter (2000), Zipkin (2000)). Unlike many of

the transition functions that appear in traditional problems, here Rt+1 is not a concave or convex

function of xt or Rt, which makes the concavity of the optimization problem not obvious.

2.6. Contribution (Revenue) Function

The profit we make during the time interval [t, t+ 1) is given by

Ĉt+1 =

{
pt+1xt, if xt <ρERt +Yt+1.

pt+1xt− (mpt+1 + b) [xt− (ρERt +Yt+1)] , if xt ≥ ρERt +Yt+1.

pt+1xt is the profit we earn by delivering xt amount of electricity to the market during the time

interval [t, t+ 1), and mpt+1 + b is the penalty we pay in the case of over-commitment. Assume

m≥ γ

ρEρR
and b≥ γ

ρEρR
µp. (3)
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Then, the cost of using the storage, which can be measured by the conversion loss, is less than

the cost of over-commitment. Otherwise, for the purpose of maximizing the revenue, there will

be no reason to use a storage in the first place. This affine penalty is sufficient to ensure the

concavity of the stochastic optimization problem. Note that these lower bounds on the penalty

factor are unfavorable assumptions - they make the environment in which we operate more adverse

and lead to a more conservative policy. If we have to operate in an environment where the above

assumptions do not hold, the optimal policy derived in this paper under the above assumptions

may not be optimal in maximizing revenue, but it should still be robust with limited risk - we lose

less money than expected in the case of over-commitment. Define

C(St, xt) :=E
[
Ĉt+1 | St, xt

]
= [µp + (1−κ4τ) (pt−µp)]

xt−m · ∫
0≤y≤xt−ρERt

Ft(y)dy

− b ∫
0≤y≤xt−ρERt

Ft(y)dy, (4)

where

Ft(y) = P [Yt+1 ≤ y | Ft] .

C(·) is known as the contribution, or the reward function. See §1 in the e-companion to this paper

for the derivation of (4).

2.7. Objective Function

Let Π be the set of all policies. A policy is an Ft-measurable function Xπ(St) that describes the

mapping from the state at time t, St, to the decision at time t, xt. For each π ∈Π, let

Gπ
t (St) :=E

[
T∑
t′=t

γt
′−tC(St′ ,X

π(St′)) | St

]
, ∀0≤ t≤ T,

where 0<γ < 1 is the discount factor and T indicates the end of the horizon. The objective, then,

is to find an optimal policy π= π∗ that satisfies

Gπ∗
t (St) = sup

π∈Π

Gπ
t (St),

for all 0≤ t≤ T .
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3. Main Assumptions and Structural Result

The main contribution of this paper is the closed form representation of the optimal policy for

advance intermittent energy commitments that also allows us to express the value of the energy

storage in a closed form. In order to achieve the results, we need assumptions on the probability

distribution of the spot market electricity price and wind energy, limit on the storage size, and the

decision epoch intervals.

3.1. Electricity Price and Wind Energy

First, we assume that (p̂t)t≥0 and (ŷt)t≥1 are independent in (Ω,F ,P). It is well-known that the

price of the electricity mainly depends on the demand as well as the main source of energy that is

controllable; for example, electricity generated from coal plants. It is fairly reasonable to assume

that the fluctuation in the electricity price is not significantly influenced by the fluctuation in the

uncontrollable and unpredictable energy supply from our wind farm, especially if we are a small

player in the market. In most cases, intermittent energy plays a minor role in the electricity

markets, anyway.

Next, assume (p̂t)t≥0 are i.i.d with distribution N
(
0, σ2

p

)
. Then, (pt)t≥0 is a standard mean-

reverting process and

E [pt+n|Ft] = µp + (1−κ4τ)
n

(pt−µp) , ∀n, t∈N+. (5)

It is common to use a mean-reverting process to model electricity prices, as shown in Eyde-

land and Wolyniec (2003).Similarly, assume (ŷt)t≥1 are 0-mean and i.i.d with standard deviation

σY ∆τ. Then, in most cases, the distributions of (ŷt)t≥1 are assumed to be truncated Gaussian

with mean 0 and standard deviation σY ∆τ. However, in this paper, we assume that (ŷt)t≥1 are

uniformly distributed with mean 0 with standard deviation σY ∆τ. Assuming that (ŷt)t≥1 are uni-

formly distributed allows us to explicitly compute various expectations that are needed to derive

the optimal policy in a closed form. Since a truncated Gaussian distribution is bounded, as long as

we match the mean and the variance, a uniform distribution can be a statistically robust substitute
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for the truncated Gaussian distribution in the context of optimizing a value function. This fact

is demonstrated in §5 where we conduct numerical experiments in which we apply the optimal

policy derived under the assumption of uniformly distributed (ŷt)t≥1 to the data generated from

truncated Gaussian distributions. Then, given Ft, Yt+1 ∼U (θt, θt +β) , where

β := 2
√

3σY ∆τ

and

θt := µY ∆τ +
M−1∑
i=0

αi (Yt−i−µY ∆τ)− β
2
, ∀t. (6)

The cumulative density function (CDF) of Yt+1 computed at time t is given by

Ft (y) = P [Yt+1 ≤ y | Ft] =


0, if y < θt
y−θt
β

if θt ≤ y≤ θt +β

1, if y > θt +β

The expected contribution function C (·) is not indexed by t because the CDF Ft(·) is determined

by θt, which is a deterministic function of St. The expected contribution is completely determined

by St and xt. However, it is important to note that θt and β do not necessarily have to be defined

as shown above. The results obtained in this paper are applicable as long as we use a forecasting

model that predicts that the electricity produced during the time interval [t, t+ 1) is uniformly

distributed given Ft.

3.2. Size of the Storage

Next, we need an assumption on the size of the storage. Since the electricity price is mean-reverting,

if we have an infinitely large storage, a naive policy that stores the energy when the expected spot

market price is less than some fixed price and commits to sell the energy in storage plus the energy

we are certain to produce when the spot market price is greater than some fixed price, will be a

riskless arbitrage policy. Arbitrage here means that there is zero probability of losing money due

to over-commitment or losing energy due to the storage being full. There is always a significant

conversion loss. Such a case is comparable to trading a stock whose price is mean-reverting. In

reality, a storage with reasonably good round-trip efficiency that can be charged and discharged
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in a short amount of time will be expensive to build and maintain, and we need an intelligent way

of determining the appropriate size of the storage. We propose that the size of the storage be

determined in comparison to ν, given by:

ν := ρR
σY
κ

2
√

3min

[
m− 1

m
,

b

b+ ρEρRγµp

]
. (7)

It is obvious that as the penalty factors m and b become larger, we need to allow for a larger

storage since our commitment level will be more conservative and we will end up storing more

energy. Also, if the round-trip efficiency of the storage ρEρR is small, we must allow for a larger

storage in order to compensate for the energy that will be lost in conversion. Next, since γµp is

the discounted expected spot market price of the electricity, if γµp is small, we need to allow for a

larger storage since our commitment level will be more conservative.

What makes ν interesting is the term σY /κ. Recall that κ is proportional to the expected number

of times the price crosses the mean per unit time. Then, 1/κ is proportional to the expected amount

of time between two consecutive crossings. Therefore, σY /κ is proportional to the volatility in the

wind energy that is produced while the spot market price “completes a cycle.” Since Rmax deter-

mines our ability to accumulate energy while the price moves, we must allow for a larger storage

when σY /κ gets larger. If Rmax =∞, we can implement an arbitrage policy, as explained above. If

Rmax ≤ ν, we must implement a more active, risk-taking policy that considers the movement of the

price towards the mean but not “count on” the price reaching a desirable level within a desirable

amount of time. The middle regime in which ν < Rmax <∞ will demand the most complicated

policy that mixes risk-taking with arbitrage. Finding the optimal policy in this middle regime

will be an interesting research topic, but it is beyond the scope of this paper. For this paper, we

assume

Rmax ≤ ρR
σY
κ

2
√

3min

[
m− 1

m
,

b

b+ ρEρRγµp

]
. (8)

(8) is necessary in order to derive (10) shown in the next section, which in turn is necessary to

prove lemma (18) that is used to derive the marginal value function in a closed form. However,
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even though (8) is imposed for mathematical convenience, numbers come out reasonable, as shown

in §5. If we use real data to obtain σY , κ,µp, ρEρR and use m and b that satisfy (3), if we let

Rmax

σY ρR
= 1.7,

for example, (8) is satisfied. That is, we can have the size of Rmax in the same order of magnitude

of the standard deviation in wind energy. Having a storage of limited size allows us to obtain the

optimal policy in a closed form and provide us with various insights, as is shown in §4. Moreover,

before investing a significant amount of capital to build a large storage, it is reasonable to assume

that wind farm operators will start with a small storage, study its effects, and then subsequently

make the investment for additional storage. This paper derives the optimal policy for energy

commitment and the corresponding value of the storage when the storage is small.

As will be sown in §4, the optimal policy under the assumption (8) will still depend on the mean

of the electricity price and how far the price is away from the mean. However, the optimal policy

will be based on the premise that the storage is not large enough to allow us to avoid the risk of

over-commitment by waiting for the price to rise without facing the risk of losing energy due to

the storage being full. Thus, (8) forces us to always balance the risk of over-commitment and the

risk of under-commitment. We not only want to avoid paying the penalty for over-commitment,

but we also want to avoid committing too little and lose energy due to conversion and the storage

being full.

Suppose we have a large storage device and (8) is violated, but we choose to implement the

policy derived in this paper that is optimal under the assumption of small storage, anyway. Then,

the cost of over-commitment will not change, but the risk of under-commitment will be smaller

than expected because we are less likely to lose energy due to the storage being full. Therefore,

the optimal policy derived in this paper will still be robust when the assumption (8) does not hold.

3.3. Decision Epoch Interval

Finally, we need an assumption on how often we make our commitment decisions. We can re-arrange

the terms from (8) to obtain:
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max

[
Rmax (m− ρEρRγ)

2
√

3 (m− 1)ρRσY −RmaxρEρRγκ
,

Rmaxb

2
√

3ρRσY b−RmaxρEρRγκµp

]
≤ 1

κ
.

We assume that the time interval ∆τ between our decision epochs satisfies the following:

max

[
Rmax (m− ρEρRγ)

2
√

3 (m− 1)ρRσY −RmaxρEρRγκ
,

Rmaxb

2
√

3ρRσY b−RmaxρEρRγκµp

]
≤∆τ ≤ 1

κ
. (9)

(9) ensures that the price always moves toward the mean in expectation, but does not overshoot

and move pass the mean in expectation. The lower bound can be re-arranged to be written as

Rmax ≤ ρRβmin

[
m− 1

m− ρEρRγ (1−κ4τ)
,

b

b+ ρEρRγκ4τµp

]
. (10)

Since we have a limit on the size of our storage as shown in our assumption (8), if ∆τ is too large,

the amount of electricity that is produced between our decisions can be too large and we are likely

to lose energy due to the storage being full. (9) gives us a reasonable decision epoch time interval

∆τ.

3.4. Structural Results

In this section, we show some structural results of the value function. Let V π
t (St) be a function

that satisfies

V π
T (ST ) = C(ST ,X

π
T (ST )),

V π
t (St) = C(St,X

π
t (St)) + γE

[
V π
t+1(St+1)|St

]
, ∀0≤ t≤ T − 1.

Then, V π
t (St) =Gπ

t (St), ∀0≤ t≤ T. For 0≤ t≤ T , let Vt(St) satisfy the following:

VT (ST ) = max
x∈R+

C(ST , x),

Vt(St) = max
x∈R+

{C(St, x) + γE [Vt+1(St+1)|St, x]} , ∀0≤ t≤ T − 1.

Vt(St) is known as the value function. According to Puterman (1994), Vt(St) =Gπ∗
t (St), ∀0≤ t≤

T. Denote

V x
t (St, x) :=E [Vt+1(St+1)|St, x] , ∀0≤ t≤ T.
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The augmented value function V x
t (St, x) is an example of a Q-factor. Let

x∗t := arg max
x∈R+

{C(St, x) + γV x
t (St, x)}=Xπ∗ (St) , ∀0≤ t≤ T.

Then,

Vt(St) = max
x∈R+

{C(St, x) + γV x
t (St, x)}

= C(St, x
∗
t ) + γV x

t (St, x
∗
t ), ∀0≤ t≤ T.

At the end of the horizon, we can show that

d

dRT
VT (ST ) = ρE [µp + (1−κ4τ) (pT −µp)] (11)

and hence

d2

dR2
T

VT (ST ) = 0. (12)

See §2 in the e-companion to this paper for the derivation of (11) and (12).

Now that we have defined the value function, we present its structure. The structural results

are mainly attributable to the storage transition function and the contribution function, and they

follow from three of the aforementioned assumptions: (ŷt)t≥1 and (p̂t)t≥1 are independent, (pt)t≥1

is mean-reverting as shown in (5), and

m≥ γ

ρEρR
and b≥ γ

ρEρR
µp.

Then, ∀0≤ t≤ T − 1, we have:

Structural Result 1. C(St, x) + γV x
t (St, x) is a concave function of (Rt, x) .

Structural Result 2. The optimal decision x∗t is positive and finite and

∂

∂x
C(St, x

∗
t ) + γ

∂

∂x
V x
t (St, x

∗
t ) = 0. (13)

Structural Result 3.

d

dRt
Vt(St) = ρE [µp + (1−κ4τ) (pt−µp)] (14)

+γE
[(
ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt

)
d

dRt+1

Vt+1(St+1) | St, x∗t
]
.
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Structural Result 4. Vt(St) is a concave function of Rt.

Structural Result 5.

ρE [µp + (1−κ4τ) (pt−µp)]≤
d

dRt
Vt(St)≤

1

ρR
[µp + (1−κ4τ) (pt−µp)] . (15)

See §2 in the e-companion to this paper for the proof of the above results.

In Structural Result 3, which shows the recursive relationship between the marginal value

functions, the meaning of the term

ρE [µp + (1−κ4τ) (pt−µp)]

is obvious; if we had an extra ∆Rt amount of energy in storage, we can commit to sell it and gain

∆RtρE [µp + (1−κ4τ) (pt−µp)]

in expected revenue. However, the second term requires some analysis. From (2), we know that

ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt
|x=x∗t

=

{
1− ρEρR, if x∗t <Yt+1, Rt + ρR (Yt+1−x∗t )<Rmax.

0, otherwise.

describes the conversion loss that occurs when we use the energy that is put into the storage when

we generate more electricity than we need to satisfy the commitment. Therefore, the term

E
[(
ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt

)
d

dRt+1

Vt+1(St+1) | St, x∗t
]

can be seen as the expected portion of the marginal future value function that is saved by not

having to go through the process of energy conversion.

4. Main Result - Infinite Horizon Analysis

In this section, we derive the marginal value function and the corresponding optimal policy for

advance energy commitment that maximizes the expected revenue in the infinite horizon case.

However, while we can obtain the value of always having a storage as shown in this paper, it is

important to note that the cost of always having storage is not the cost of installing the storage
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once in the beginning. Batteries have finite lifetime, and we might have to re-install them every

ten years, for example. We let T −→∞ and drop the index t from the value function:

V (St) = lim
T−→∞

E

[
T∑
t′=t

γt
′−tC(St′ ,X

π∗(St′)) | St

]
.

Then, V (St) satisfies

V (St) = max
x∈R+

{C(St, x) + γE [V (St+1)|St, x]}

= C(St, x
∗
t ) + γV x(St, x

∗
t ).

Since the structural properties shown in the previous section holds true for all T, V (St) main-

tains those structural properties. In §4.1, we derive the optimal policy using the main assumptions

stated in §2 and the structural results shown in §3. We first state:

Theorem 1. The optimal policy, when the electricity generated from the wind farm is uniformly

distributed from θt to θt +β, is given by

x∗t =Xπ∗(St) = ρERt + θt +
µpK1 + (pt−µp) (1−κ4τ)K2

m [µp + (pt−µp) (1−κ4τ)] + b
β (16)

where

K1 = 1− γ ρRρE
1− ρRρE

(
exp

[
γ (1− ρRρE)

1

β

Rmax

ρR

]
− 1

)
,

and

K2 = 1− γ (1−κ4τ)
ρRρE

1− ρRρE

(
exp

[
γ (1−κ4τ) (1− ρRρE)

1

β

Rmax

ρR

]
− 1

)
.

Before proving (16), we first analyze its components. Since ρERt is the amount of electricity

that can be produced by converting the energy in storage and θt is the amount of electricity that

is certain to be produced, ρERt + θt can be seen as the riskless term. Since there is a limit on

the size of the storage and we lose energy if the storage is full, we always want to commit to

sell at least ρERt + θt. The issue is then how much more to commit relative to this base level.

Over-commitment is costly because the expected penalty always exceeds the expected spot price.

Under-commitment is costly for two reasons. First, excess production must be stored and storage
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is not free since the round-trip efficiency is less than 1. Second, since there is a limit on the amount

of energy you can store, Rmax, if we commit too little and produce too much we lose the production

that cannot be stored. So the optimal extra commitment over the base level must balance the cost

of over-commitment and under-commitment. β is the uncertainty in the electricity production, and

committing

µpK1 + (pt−µp) (1−κ4τ)K2

m [µp + (pt−µp) (1−κ4τ)] + b
(17)

fraction of β achieves the balance between the cost of over-commitment and the cost of under-

commitment. Note that the solution to a typical newsvendor problem states that the vendor should

always try to satisfy a fixed fraction of the random demand (Khouja (1999), Petruzzi and Dada

(1999)). However, in our case, the fraction is a function of the price because we can speculate on

the movement of the price that is mean-reverting.

In §4.2, we obtain the stationary distribution of the storage level corresponding to the optimal

policy. In §4.3, we derive the economic value of the storage as the relative increase in average

revenue due to the existence of the storage.

4.1. Optimal Policy

In this section, we prove the optimal policy (16) by first deriving the marginal value function. From

Structural Result 2, we know that the optimal decision x∗t must satisfy

∂

∂x
C(St, x

∗
t ) +

∂

∂x
V x(St, x

∗
t ) =

∂

∂x
C(St, x

∗
t ) + γE

[
∂Rt+1

∂x

d

dRt+1

V (St+1)|St, x∗t
]

= 0.

Therefore, in order to compute x∗t , we only need to know the derivative of V (St+1) with respect to

Rt+1, and we do not need to know V (St+1) itself. To derive d
dRt+1

V (St+1), we need the following

lemma:

Lemma 1.

x∗t +
Rmax−Rt

ρR
≤ θt +β, ∀t. (18)
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Proof: See §3 in the e-companion to this paper. The proof utilizes the inequality (10).

We know that θt+β−x∗t is the maximum amount of excess electricity that can be left over after

fulfilling the commitment. Suppose that the inequality (18) does not hold. Then, ρR (θt +β−x∗t )≤

Rmax − Rt, indicating that there is always enough room left in the storage to accommodate all

of the excess electricity, implying that there is no risk of under-commitment at all. However, we

have restricted the size of the storage as shown in (10) precisely to avoid such a situation. We

know that the optimal policy ought to balance the risk of under-commitment and the risk of over-

commitment. The above lemma allows us to compute d
dRt

V (St) from which we can derive the

optimal policy. We first state:

Theorem 2.

d

dRt
V (St) = ρEµp exp

[
γ (1− ρRρE)

1

β

(
Rmax−Rt

ρR

)]
(19)

+ρE (pt−µp) (1−κ4τ) exp

[
γ (1−κ4t) (1− ρEρR)

1

β

(
Rmax−Rt

ρR

)]
.

Proof : Here, we show a condensed version of the proof by omitting various algebraic steps. See

§4 in the e-companion to this paper for a detailed proof. We prove the theorem by using backward

induction in the finite horizon setting and letting T go to infinity. First, we make the induction

hypothesis that

d

dRT−i
VT−i(ST−i) = ρEµp

i∑
j=0

1

j!

[
γ (1− ρRρE)

1

β

(
Rmax−RT−i

ρR

)]j
(20)

+ρE (pT−i−µp) (1−κ4τ)
i∑

j=0

1

j!

[
γ (1−κ4t) (1− ρRρE)

1

β

(
Rmax−RT−i

ρR

)]
for some i≥ 0, and prove that

d

dRT−(i+1)

VT−(i+1)(ST−(i+1)) = ρEµp

i+1∑
j=0

1

j!

[
γ (1− ρRρE)

1

β

(
Rmax−RT−i

ρR

)]j

+ρE
(
pT−(i+1)−µp

)
(1−κ4τ)

i+1∑
j=0

1

j!

[
γ (1−κ4t) (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j
.

From (9), we know that

d

dRT
VT (ST ) = ρEµp + ρE (pT −µp) (1−κ4τ) .
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Therefore, the expression for d
dRT−i

VT−i(ST−i) shown above is true for i= 0. From (2), we can

show that(
ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt

)
1

j!

(
Rmax−Rt+1

ρR

)j
|x=x∗t

=

{
(1− ρEρR) 1

j!

[
Rmax−Rt

ρR
− (Yt+1−x∗t )

]j
, if x∗t <Yt+1, Rt + ρR (Yt+1−x∗t )<Rmax.

0, otherwise.
.

Next, by (18),

ft(y) =
1

β
, ∀x∗t ≤ y≤ x∗t +

Rmax−Rt
ρR

.

Then, we can show

E

[(
ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt

)
1

j!

(
Rmax−Rt+1

ρR

)j
| St, x∗t

]
= (1− ρEρR)

1

β

1

(j+ 1)!

(
Rmax−Rt

ρR

)j+1

.

From Structural Result 3,

d

dRT−(i+1)

VT−(i+1)(ST−(i+1))

= ρE
(
µp + (1−κ4τ)

(
pT−(i+1)−µp

))
+ γE

[(
ρE
∂RT−i
∂x

+
∂RT−i

∂RT−(i+1)

)
d

dRT−i
VT−i(ST−i) | ST−(i+1), x

∗
T−(i+1)

]
= ρEµp

i+1∑
j=0

1

j!

[
γ (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j

+ρE
(
pT−(i+1)−µp

)
(1−κ4τ)

i+1∑
j=0

1

j!

[
γ (1−κ4τ) (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j
.

Therefore, (20) is true for ∀i≥ 0. Next, substitute t for T − (i+ 1) . Then,

d

dRt
Vt(St) = ρEµp

T−t∑
j=0

1

j!

[
γ (1− ρRρE)

1

β

(
Rmax−Rt

ρR

)]j

+ρE (pt−µp) (1−κ4τ)
T−t∑
j=0

1

j!

[
γ (1−κ4τ) (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j
,

∀t≤ T. If we let T go to infinity,

d

dRt
V (St) = lim

T−→∞

d

dRt
Vt(St)

= ρEµp exp

[
γ (1− ρRρE)

1

β

(
Rmax−Rt

ρR

)]
+ρE (pt−µp) (1−κ4τ) exp

[
γ (1−κ4τ) (1− ρRρE)

1

β

(
Rmax−Rt

ρR

)]
, ∀t.
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To compute the optimal decision x∗t at time t, all we need to know is d
dRt+1

V (St+1). Since we

now know what d
dRt+1

V (St+1) is, we are ready to prove (16).

Proof of (16): From (19),

E
[
∂Rt+1

∂x

d

dRt+1

V (St+1) | St, x
]

= −µp
ρRρE

1− ρRρE

(
exp

[
γ (1− ρRρE)

1

β

Rmax

ρR

]
− 1

)
(21)

− (pt−µp) (1−κ4τ)
2 ρRρE

1− ρRρE

(
exp

[
γ (1−κ4τ) (1− ρRρE)

1

β

Rmax

ρR

]
− 1

)
,

∀x≥ ρERt + θt. To see the derivation of (21), see §5 in the e-companion to this paper. Then, from

Structural Result 2, we know that the optimal decision x∗t must satisfy

∂

∂x
C(St, x

∗
t ) + γ

∂

∂x
V x(St, x

∗
t )

= pt,t+1− (mpt,t+1 + b)Ft(x
∗
t − ρERt) + γE

[
∂Rt+1

∂x

d

dRt+1

V (St+1) | St, x∗t
]

= 0,

where

pt,t+1 :=E [pt+1|Ft] = µp + (1−κ4τ) (pt−µp) .

Therefore,

(mpt,t+1 + b)
1

β
(x∗t − ρERt− θt)

= pt,t+1 + γE
[
∂Rt+1

∂x

d

dRt+1

V (St+1) | St, x∗t
]

= µp + (pt−µp) (1−κ4τ)− γµp
ρRρE

1− ρRρE

(
exp

[
γ (1− ρRρE)

1

β

Rmax

ρR

]
− 1

)
−γ (pt−µp) (1−κ4τ)

2 ρRρE
1− ρRρE

(
exp

[
γ (1−κ4τ) (1− ρRρE)

1

β

Rmax

ρR

]
− 1

)
= µpK1 + (pt−µp) (1−κ4τ)K2.

Then,

x∗t = ρERt + θt +
µpK1 + (pt−µp) (1−κ4τ)K2

m [µp + (pt−µp) (1−κ4τ)] + b
β.
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Note that both K1 and K2 increases when ρRρE, Rmax, or γ is reduced. We know that the optimal

amount should naturally depend on the penalty, the round-trip efficiency, the maximum storage

limit, and the discount factor as follows. First, it should decrease with increasing penalty, as being

short incurs the penalty. Second, it should increase with reduced round-trip efficiency, as being

long implies paying to store (losing energy). Third, it should decrease with increasing maximum

storage. If our storage capacity is greater, we lose less of the energy we do not sell, and we can

afford to be more conservative and commit less. Fourth, it should increase with decreasing discount

factor, because the value of what we store now to use in the future decreases with the discount

factor.

Next, suppose storage devices with sufficient capacities become ubiquitous in the future and

hence electricity becomes a very liquid asset just like stocks. Then, arbitraguers taking advantage

of predictable patterns such as mean-reversion will cause the electricity prices to behave more and

more like a martingale.

Corollary 1. If κ= 0, implying that (pt)t≥0 is a martingale, then K1 =K2 and

x∗t = ρERt + θt +
pt

mpt + b
K1β. (22)

If the price is a martingale, it is “stochastically constant” and we cannot speculate on the future

movement of the price. Then, the fraction is just directly proportional to the ratio between the

current expected spot market price and the penalty price.

4.2. Stationary Distribution of the Storage Level

Now that we have the optimal policy (16), we want to assess the expected value of storage cor-

responding to the policy. In order to obtain a closed-form expression for the expected value of

storage, we must analyze the dynamics of our system at the steady-state and derive the stationary

distribution of the storage level. Denote

Zt :=
µpK1 + (pt−µp) (1−κ4τ)K2

m [µp + (pt−µp) (1−κ4τ)] + b
, ∀t.
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From (2), we know that Rt+1 is a function of (Rt, x
∗
t , Yt+1) . Since Yt+1 is a function of θt and

x∗t is a function of (Rt,Zt, θt) as shown in (16), we can think of Rt+1 as a function of (Rt,Zt, θt).

However, because θt is the amount of electricity that we are certain to produce and commit, we

know that Rt+1 in fact does not depend on θt. Thus, Rt+1 is a function of (Rt,Zt) . Therefore,

if the random process (Zt)t≥0 is stationary ergodic, the process (Rt)t≥0 will reach a steady-state.

Since (Zt)t≥1 is driven by (pt)t≥1 , we first need to know the distribution of (pt)t≥1 in steady state.

Here we use the term “steady-state” to refer to the unconditional process.

Proposition 1. At steady-state,

pt ∼N
(
µp,

σ2
p

1− (1−κ∆τ)
2

)
. (23)

Proof: We know that (23) is true if and only if (23) implies

pt+1 ∼N
(
µp,

σ2
p

1− (1−κ∆τ)
2

)
.

Suppose (23) is true. Then,

(1−κ∆τ) (pt−µp) ∼ N

(
0,

(1−κ∆τ)
2
σ2
p

1− (1−κ∆τ)
2

)
.

Since p̂t+1 is independent from pt and p̂t+1 ∼N
(
0, σ2

p

)
,

(1−κ∆τ) (pt−µp) + p̂t+1 ∼N
(

0,
σ2
p

1− (1−κ∆τ)
2

)
.

Then,

pt+1 = µp + (1−κ∆τ) (pt−µp) + p̂t+1 ∼N
(
µp,

σ2
p

1− (1−κ∆τ)
2

)
�

Since Zt is a deterministic function of pt, (Zt)t≥1 reaches steady-state when (pt)t≥1 reaches

steady-state. Although real-time electricity spot prices can be negative due to tax subsidies, it will

be extremely rare for the day-ahead forecast price to be negative. Thus, in practice, we may assume

that the price is always going to be positive. The first and second moments of Zt at steady-state

given pt ≥ 0 is

Z1 :=E
[
µpK1 + (ε−µp) (1−κ4τ)K2

m [µp + (ε−µp) (1−κ4τ)] + b
| ε≥ 0

]
, (24)
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and

Z2 :=E

[(
µpK1 + (ε−µp) (1−κ4τ)K2

m [µp + (ε−µp) (1−κ4τ)] + b

)2

| ε≥ 0

]
(25)

where

ε∼N
(
µp,

σ2
p

1− (1−κ∆τ)
2

)
.

Also, define

Z̃1 :=E
[

µp + (ε−µp) (1−κ4τ)

m [µp + (ε−µp) (1−κ4τ)] + b
| ε≥ 0

]
,

and

Z̃2 :=E

[(
µp + (ε−µp) (1−κ4τ)

m [µp + (ε−µp) (1−κ4τ)] + b

)2

| ε≥ 0

]
,

corresponding to the case where Rmax = 0, which makes K1 = K2 = 1. Z1,Z2, Z̃1, and Z̃2 can be

easily computed via Monte-Carlo simulation using sample realizations of ε greater than zero.

Proposition 2. Then, the stationary distribution of Rt corresponding to the steady-state is

fRt (r) =
d

dr
P [Rt ≤ r]

= Z1δ (r) +

(
Z1 +

ρRρE
1− ρRρE

)
(1− ρRρE)

ρRβ
exp

[
(1− ρEρR)

ρRβ
r

]
1{0≤r≤Rmax}

+
1

1− ρEρR

(
1−

(
ρRρE +Z1 (1− ρEρR)

)
exp

[
(1− ρEρR)

ρRβ
Rmax

])
δ (r−Rmax) , (26)

where δ (·) denotes the Dirac-delta function.

Proof: Here, we show a condensed version of the proof by omitting various algebraic steps. See

§6 in the e-companion to this paper for a detailed proof. From (2) and (16), we can show that

P [Rt+1 = 0 | Rt ] = P [Rt+1 = 0 ] =Z1

and

P [Rt+1 =Rmax | Rt] = 1−Z1−
Rmax

ρRβ
+

(1− ρEρR)Rt
ρRβ

,

in the steady-state. Also, from (2), we can show that

fRt+1|Rt (u|Rt) =

{ ρE
β

if 0<u<Rt
1

ρRβ
if Rt ≤ u<Rmax

.
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Therefore, we can write the conditional probability density function as

fRt+1|Rt (u|Rt = r) = Z1δ (u) +
ρE
β

1{0≤u<r}+
1

ρRβ
1{r≤u≤Rmax}

+

(
1−Z1−

Rmax

ρRβ
+

(1− ρEρR) r

ρRβ

)
δ (u−Rmax) ,

where δ (·) denotes the Dirac-delta function. Since

P [Rt = 0] =Z1

in the steady-state, we know that the stationary distribution can be written as

fRt (r) =Z1δ (r) + g (r)1{0≤r≤Rmax}+

1−Z1−
Rmax∫
r=0

g (r)dr

 δ (r−Rmax) ,

for some function g (r) . By definition, the stationary distribution must satisfy

fRt+1
(u) =

Rmax∫
r=0

fRt+1,Rt (u, r)dr=

Rmax∫
r=0

fRt+1|Rt (u|Rt = r)fRt (r)dr= fRt (u) .

By computing the integral and matching the terms, we can show that

g(u) =
Z1 (1− ρRρE)

ρRβ
+
ρRρE
ρRβ

+
(1− ρRρE)

ρRβ

u∫
r=0

g (r)dr.

Taking the derivative with respect to u on both side gives

g′(u) =
(1− ρRρE)

ρRβ
g(u).

Then, we can show that

g(r) =

(
Z1 +

ρRρE
1− ρRρE

)
(1− ρRρE)

ρRβ
exp

[
(1− ρEρR)

ρRβ
r

]
and

1−Z1−
Rmax∫
r=0

g (r)dr=
1

1− ρEρR

(
1−

(
ρRρE +Z1 (1− ρEρR)

)
exp

[
(1− ρEρR)

ρRβ
Rmax

])
.

�

The stationary distribution (26) shows that if the round-trip efficiency is lower, the probability

of hitting the capacity limit Rmax is lower while the probability of depleting the storage is higher,

as expected.
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4.3. Economic Value of the Storage

Using the stationary distribution of the storage level obtained in the previous section, we can

compute the following:

Corollary 2. In steady-state,

E [Rt] =
Rmax

1− ρRρE
−
(
Z1 +

ρRρE
1− ρRρE

)
ρRβ

1− ρRρE

(
exp

[
(1− ρRρE)

ρRβ
Rmax

]
− 1

)
(27)

and the expected revenue in steady-state is

CRmax
SS : =E [C (St, x

∗
t )] = µpρEE [Rt] +µpE [θt] +µpZ1β− (mµp + b)

β

2
Z2

=
µpρERmax

1− ρRρE
−µpβ

(
Z1 +

ρRρE
1− ρRρE

)
ρEρR

1− ρRρE

(
exp

[
(1− ρRρE)

ρRβ
Rmax

]
− 1

)
(28)

+µpβ

(
Z1−m

Z2

2
− 1

2

)
+µpµY − bβ

Z2

2
.

See §7 in the e-companion to this paper for the derivation of (27) and (28). We know that

K1 =K2 = 1 if Rmax = 0. Therefore, from (28), if we do not have a storage and Rmax =Rt = 0, ∀t,

the expected revenue at steady-state would be

C0
SS := µpβ

(
Z̃1−m

Z̃2

2
− 1

2

)
+µpµY − bβ

Z̃2

2
.

Then, the relative increase in the expected revenue in steady-state due to the existence of storage

is

ψ : =
CRmax
SS −C0

SS

C0
SS

(29)

=

{
ρEρR

1− ρRρE
Rmax

βρR
−
(
Z1 +

ρRρE
1− ρRρE

)
ρEρR

1− ρRρE

(
exp

[
(1− ρRρE)

Rmax

ρRβ

]
− 1

)
+
(
Z1− Z̃1

)
− 1

2

(
m+

b

µp

)(
Z2− Z̃2

)}
/

{
Z̃1−m

Z̃2

2
− 1

2
+
µY
β
− b

µp

Z̃2

2

}
.

5. Numerical Results

In the previous section, we have derived the optimal commitment policy and the corresponding

value of the storage assuming that the forecast of electricity generated from the wind farm is uni-

formly distributed. However, the hourly wind speed data obtained from the North American Land
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120.0725◦W 111.3225◦W 102.5725◦W 93.8225◦W 85.0725◦W 76.3225◦W
51.8125◦N 181.7084 132.0368 144.4341 172.7166 276.2300 351.6345
46.1875◦N 173.3216 119.7605 318.7690 347.1192 482.2868 531.8000
40.5625◦N 156.4102 231.1095 N/A 380.6635 401.7359 491.8443
34.9375◦N 121.7831 N/A 224.7323 212.8919 198.2480 728.0436

Table 1 Mean of the cube of the speed of the wind in January 2000

Data Assimilation System (NLDAS) project shows that when forecasting the cube of the speed

of the wind, a truncated Gaussian distribution fits the data better than a uniform distribution.

In this section, we simulate the wind energy process using a truncated Gaussian distribution and

compare the relative increase in revenue due to the existence of storage computed numerically by

implementing our policy (16) to the one computed theoretically from the equation (29).

From the NLDAS project, we extracted wind speed data from 22 locations across the United

States. Since the wind characteristics vary throughout the year due to seasonal effects, it is common

to assume that the wind process is time-invariant over a one month period but not beyond that

(Ettoumi, et al. (2003)). Therefore, we use separate model parameters and corresponding policies

for each month. We found that the third-order correlation is very small compared to the first and

second order correlation, and represent (Yt)t≥1 , the energy generated from our wind farm, as a

second-order AR process:

Yt+1 = µY +α0 (Yt−µY ) +α1 (Yt−1−µY ) + ŷt+1, (30)

for some µY , α0 and α1. When we implement our policy (16), we assume (ŷt)t≥1 is i.i.d with

distribution U
(
−β

2
, β

2

)
, for some β. β is computed by matching β2

12
to the variance of the residual in

the AR process, (ŷt)t>1. µY ’s (in m3/s3) for the selected 22 locations computed using the January

2000 data, for example, are given in Table 1 and β’s (in m3/s3) are given in Table 2. From

Table 1 and Table 2, we can see that µY ’s and β’s are comparable in magnitude, implying that

wind energy production is highly volatile.

After we compute µY , α0,α1 and β using the NLDAS data, we generate wind energy processes

(Yt)t≥1 from equation (30) where (ŷt)t>1 is i.i.d and ŷt ∼ N
(

0, β
2

12

)
, ∀t. However, when we are

computing our commitment from our policy (16), we assume ŷt ∼U
(
−β

2
, β

2

)
. From (6),
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120.0725◦W 111.3225◦W 102.5725◦W 93.8225◦W 85.0725◦W 76.3225◦W
51.8125◦N 250.3154 103.6640 186.1639 127.5475 150.6440 241.4260
46.1875◦N 159.1172 86.1458 294.4335 305.5882 329.9655 447.0356
40.5625◦N 150.7949 151.0185 N/A 456.5994 354.0033 501.0571
34.9375◦N 167.9374 N/A 294.1367 242.8136 175.6343 494.2871

Table 2 Spread of the cube of the speed of the wind in January 2000

120.0725◦W 111.3225◦W 102.5725◦W 93.8225◦W 85.0725◦W 76.3225◦W
51.8125◦N 0.3682 0.1813 0.3378 0.1727 0.1213 0.1584
46.1875◦N 0.2185 0.1630 0.2191 0.2073 0.1538 0.1969
40.5625◦N 0.2245 0.1436 N/A 0.2985 0.2028 0.2394
34.9375◦N 0.3457 N/A 0.3211 0.2722 0.2005 0.1444

Table 3 Relative increase in revenue computed by implementing our policy (16)

θt = µY +α0 (Yt−µY ) +α1 (Yt−1−µY )− β
2
.

Next, we fit the hourly spot market price provided by a utility company to the process

pt+1 = µp + (1−κ4τ) (pt−µp) + p̂t+1, (31)

where and (p̂t)t≥0 are i.i.d with distribution N
(
0, σ2

p

)
. In our experiments, we use ρEρR = 0.75,

γ = 0.99, µp = 49.9, σp = 47.46, 4τ = 1, κ = 0.4182, m = 1.6, b = 67.5, and Rmax
ρRβ

= 0.5. Then,

Z1 = .1912, Z2 = .0467, Z̃1 = .3270, and Z̃2 = .1139. This gives

ψ= 0.1893/

(
µY
β
− 0.3411

)
. (32)

We implemented our policy (16) 100 times by generating the prices from (31) and the wind

energy process from (30) using the coefficients µ,α0,α1 and β. Then, we computed the relative

increase in revenue due to the existence of storage for each implementation of our policy and found

the average of those values over the 100 experiments. Next, we computed the relative increase in

revenue directly from equation (29). The relative increase in revenue computed by implementing

our policy (16), averaged over 36 months, is given in Table 3. The relative increase in revenue

computed from (29) and hence (32), is given in Table 4.

From the above tables, we can see that the relative increase in revenue obtained through a

sample run implementing our policy (16) is comparable to the relative increase in revenue computed
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120.0725◦W 111.3225◦W 102.5725◦W 93.8225◦W 85.0725◦W 76.3225◦W
51.8125◦N 0.4919 0.2030 0.4356 0.1869 0.1268 0.1697
46.1875◦N 0.2530 0.1804 0.2553 0.2382 0.1689 0.2231
40.5625◦N 0.2719 0.1592 N/A 0.3843 0.2385 0.2955
34.9375◦N 0.4929 N/A 0.4476 0.3534 0.2403 0.1673

Table 4 Relative increase in revenue computed from (29)

Figure 1 Plot of theoretical value of storage computed from (16) versus value of storage computed numerically.

using the closed-form equation (29), even though the wind energy processes are actually generated

from a truncated Gaussian distribution.

Figure 1 shows the relationship between the numerical results from Table 3 and the theoretical

results from Table 4. There are 22 data points corresponding to each of the 22 locations. For

each data point, the x-coordinate corresponds to the theoretical value computed from (29) and the

y-coordinate corresponds to the numerical value computed from our policy (16). The error bar

covers two standard deviations. In Figure 1, one can see that almost all of the data points are

slightly below the line y = x. That is, the relative increase in revenue computed from our policy

(16) is almost always slightly less than the relative increase in revenue computed from (29). This is

because the theoretical values were computed assuming that the wind energy process is generated

from a uniform distribution, which makes our policy optimal, while the actual experiment used wind

energy processes generated from a truncated Gaussian processes, making our policy suboptimal.
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The difference is approximately 15.6% on average.

6. Conclusions

In this paper, we have derived an optimal policy for making advance commitments of energy from

an intermittent source such as wind, in the presence of a finite storage buffer, energy conversion

losses and a mean-reverting process for electricity prices. The goal of the paper was an analytical

result that could be easily applied by energy economists, financial analysis and managers who need

to estimate the value of a wind turbine, or as a heuristic within a simulation-based model. For this

reason, we studied a stylized model which introduced several simplifying assumptions to make the

problem analytically tractable. In addition to deriving an optimal policy for our stylized model,

we were also able to derive an expression for the value of storage, making it possible to understand

the interaction of volatility in wind, the capacity of the storage device and storage losses.

Our model requires a number of assumptions such as stationarity in the wind and price processes,

and the assumption of uniformly distributed errors in the wind forecast. It would be nice if we

could show that the optimal policy always has a form similar to the newsvendor problem as shown

in (16), regardless of the distribution of wind energy. Another dimension arises in risk mitigation

when modeling heavy-tailed behaviors in electricity prices.

If the model were to be applied in the context of making day-ahead commitments, we have

ignored the ability to make adjustments in the hour-ahead market. An important extension would

be the derivation of a policy which captured the hour-ahead market within the day-ahead market.

A potential opportunity for future research would be to use the policy in this paper to plan

commitments in the hour-ahead market, and then use this to derive an analytical policy for the

day-ahead market.

Real-world energy storage tends to exhibit more complex physics than are assumed in simple

inventory models. For example, storage losses can be a function of the rate of energy production

(which varies with the cube of the wind speed), and the amount of energy that can be stored in

some devices can depend on the rate at which the energy has been stored. Finally, some devices
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such as compressed air require increasing amounts of energy as the device gets close to capacity

(compressed air storage devices can reach pressures of 3000 psi or more).

It is unlikely that we can derive analytical solutions for more general problems (for example,

those which capture nonstationarities in the wind or price processes), but it is possible that a

numerical solution could be used to calibrate an analytical model such as ours to reduce the errors

due to these effects. Ultimately, there will always be a need for accurate models which will have

to be solved using numerical methods, but at the same time we feel that there will also be interest

in analytical models that are easy to compute and which provide insights into tradeoffs between

parameters.

It is possible that some of the issues that arise in the analysis of energy problems may spark new

interest in problems in classical inventory theory which may share similar properties. For example,

there are applications in classical supply chain management where the supply of product is random,

and where vendors may have to make commitments to deliver product, using stored inventories to

help smooth over supply problems.
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Appendix

1. Proof of (4):

From

Ĉt+1 =

{
pt+1xt, if xt <ρERt +Yt+1.

pt+1xt− (mpt+1 + b) [xt− (ρERt +Yt+1)] , if xt ≥ ρERt +Yt+1.

and the assumption that Yt+1 is independent from pt+1, we know that

C(St, xt) = E
[
Ĉt+1 | St, xt

]
=

∫
0≤y≤xt−ρERt

(pt,t+1xt− (mpt,t+1 + b) [xt− ρERt− y])ft(y)dy+

∫
xt−ρERt<y

(pt,t+1xt)ft(y)dy

= pt,t+1xt− (mpt,t+1 + b) (xt− ρERt) ·
∫

0≤y≤xt−ρERt

ft(y)dy + (mpt,t+1 + b) ·
∫

0≤y≤xt−ρERt

yft(y)dy,

where

pt,t+1 :=E [pt+1 | Ft] = µp + (1−κ4τ) (pt−µp) ,

and

ft(y) =


0, if y < θt
1
β
, if θt ≤ y≤ θt +β

0, if θt +β < y
.

Using integration by parts, ∫
0≤y≤xt−ρERt

yft(y)dy=

∫
0≤y≤xt−ρERt

y [Ft(y)]
′
dy

= yFt(y)|xt−ρERty=0 −
∫

0≤y≤xt−ρERt

Ft(y)dy

= (xt− ρERt)Ft(xt− ρERt)−
∫

0≤y≤xt−ρERt

Ft(y)dy.

Therefore,

C(St, xt) = pt,t+1xt− (mpt,t+1 + b) ·
∫

0≤y≤xt−ρERt

Ft(y)dy

= [µp + (1−κ4τ) (pt−µp)]

xt−m · ∫
0≤y≤xt−ρERt

Ft(y)dy


−b

∫
0≤y≤xt−ρERt

Ft(y)dy.
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2. Proof of Structural Results:

In this section, we prove the structural results. In §2.1, we first introduce the various derivatives

that are used for the proof. In §2.2, we introduce some lemmas that are also used for the proof.

Finally, in §2.3, we prove the structural results for the value function using backward induction.

2.1. Derivatives

Utilizing the derivatives of the contribution function and the storage transition function will be

central to the proof. First, from (4), we can compute the following derivatives:

∂

∂x
C(St, x) = [µp + (1−κ4τ) (pt−µp)] [1−mFt(x− ρERt)]− bFt(x− ρERt), (1)

∂

∂Rt
C(St, x) = [µp + (1−κ4τ) (pt−µp)]mρEFt(x− ρERt) + bρEFt(x− ρERt), (2)

∂2

∂x2
C(St, x) =− [µp + (1−κ4τ) (pt−µp)]mft(x− ρERt)− bft(x− ρERt), (3)

∂2

∂R2
t

C(St, x) =− [µp + (1−κ4τ) (pt−µp)]ρ2
Emft (x− ρERt)− ρ2

Emft (x− ρERt) , (4)

and

∂2

∂x∂Rt
C(St, x) = [µp + (1−κ4τ) (pt−µp)]ρEmft(x− ρERt) + bρEft(x− ρERt), (5)

where

ft (y) :=
d

dy
Ft (y) =

{
1
β
, if θt ≤ y≤ θt +β

0, else
.

Next, from (2),

∂Rt+1

∂x
=


0, if Rt + ρR (Yt+1−x)≥Rmax,
−ρR, if x< Yt+1, Rt + ρR (Yt+1−x)<Rmax,
− 1
ρE
, if Yt+1 ≤ x< ρERt +Yt+1,

0, if x≥ ρERt +Yt+1,

(6)

and

∂Rt+1

∂Rt
=


0, if Rt + ρR (Yt+1−x)≥Rmax.
1, if x< Yt+1, Rt + ρR (Yt+1−x)<Rmax.
1, if Yt+1 ≤ x< ρERt +Yt+1.
0, if x≥ ρERt +Yt+1.

. (7)

Note that

∂

∂x
V x
t (St, x

∗
t ) =

∂

∂x
E [Vt+1(St+1)|St, x] |x=x∗t
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= E
[
∂Rt+1

∂x

d

dRt+1

Vt+1(St+1)|St, x∗t
]
,

and

∂

∂Rt
V x
t (St, x

∗
t ) =

∂

∂Rt
E [Vt+1(St+1)|St, x] |x=x∗t

= E
[
∂Rt+1

∂Rt

d

dRt+1

Vt+1(St+1)|St, x∗t
]
.

This is because Rt+1 is a continuous function of Rt and x while Wt+1 is not a function of Rt and x.

The ability to exchange the derivative and the expectation is used throughout this paper. Next,

acknowledging that x∗t is a function of Rt,

d

dRt
V x
t (St, x

∗
t ) : =

∂

∂Rt
V x
t (St, x

∗
t ) +

dx∗t
dRt

∂

∂x
V x
t (St, x

∗
t ),

d

dRt
C(St, x

∗
t ) : =

∂

∂Rt
C(St, x

∗
t ) +

dx∗t
dRt

∂

∂x
C(St, x

∗
t ),

where

dx∗t
dRt

=
d

dRt
Xπ∗ (St) .

From (1) and (2),

∂

∂Rt
C(St, x) = [µp + (1−κ4τ) (pt−µp)]mρEFt(x− ρERt) + bρEFt(x− ρERt)

= ρE ([µp + (1−κ4τ) (pt−µp)]− ([µp + (1−κ4τ) (pt−µp)] [1−mFt(x− ρERt)]− bFt(x− ρERt)))

= ρE

(
[µp + (1−κ4τ) (pt−µp)]−

∂

∂x
C(St, x)

)
.

Therefore,

d

dRt
C(St, x

∗
t ) =

∂

∂Rt
C(St, x

∗
t ) +

dx∗t
dRt

∂

∂x
C(St, x

∗
t )

= ρE

(
[µp + (1−κ4τ) (pt−µp)]−

∂

∂x
C(St, x

∗
t )

)
+
dx∗t
dRt

∂

∂x
C(St, x

∗
t )

= ρE [µp + (1−κ4τ) (pt−µp)] +

(
dx∗t
dRt
− ρE

)
∂

∂x
C(St, x

∗
t ). (8)

Next, from (3), we know that C(ST , x) is a concave function of x. Therefore, x∗T must satisfy

∂

∂x
C(ST , x

∗
T ) = 0,
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and from (8),

d

dRT
VT (ST ) =

d

dRT
C(ST , x

∗
T )

= ρE [µp + (1−κ4τ) (pT −µp)] +

(
dx∗T
dRT

− ρE
)
∂

∂x
C(ST , x

∗
T )

= ρE [µp + (1−κ4τ) (pT −µp)] . (9)

Then,

d2

dR2
T

VT (ST ) = 0. (10)

Next, denote

gt(Rt+1,Wt) :=EWt+1
[Vt+1(St+1) | St, x] ,

where Rt+1 is a function of Rt, x, and Ŷt+1, as shown in (2). Also, denote

g′t(Rt+1,Wt) : =
d

dRt+1

gt(Rt+1,Wt) =EWt+1

[
d

dRt+1

Vt+1(St+1) | St, x
]
, and

g′′t (Rt+1,Wt) : =
d2

dR2
t+1

gt(Rt+1,Wt) =EWt+1

[
d2

dR2
t+1

Vt+1(St+1) | St, x
]
.

Lemma 2.1: Then, ∀0≤ t≤ T − 1,

∂2

∂x2
V x
t (St, x) =E

[(
∂Rt+1

∂x

)2
d2

dR2
t+1

Vt+1(St+1) | St, x

]
+

1

ρE
ft(x− ρERt)g′t(0,Wt)

− 1

ρE
(1− ρRρE)ft(x)g′t(Rt,Wt)− ρRft

(
x+

Rmax−Rt
ρR

)
g′t(Rmax,Wt), (11)

where

g′t(0,Wt) : =EWt+1

[
d

dRt+1

Vt+1(St+1) |Rt+1 = 0,Wt

]
,

g′t(Rt,Wt) : =EWt+1

[
d

dRt+1

Vt+1(St+1) |Rt+1 =Rt,Wt

]
, and

g′t(Rmax,Wt) : =EWt+1

[
d

dRt+1

Vt+1(St+1) |Rt+1 =Rmax,Wt

]
.

g′t(0,Wt) is the left-derivative and g′t(Rmax,Wt) is the right derivative.

Proof : From (6),

∂

∂x
E [V (St+1) | St, x] =E

[
∂Rt+1

∂x
g′t(Rt+1,Wt) | St, x

]
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= −
∫

x<y<x+
Rmax−Rt

ρR

ρRg
′
t (Rt + ρR (y−x) ,Wt)ft(y)dy−

∫
x−ρERt<y≤x

1

ρE
g′t

(
Rt−

1

ρE
(x− y) ,Wt

)
ft (y)dy

= −
∫

0<u<
Rmax−Rt

ρR

ρRg
′
t (Rt + ρRu,Wt)ft(u+x)du−

∫
−ρERt<u≤0

1

ρE
g′t

(
Rt +

1

ρE
u,Wt

)
ft (u+x)du

= −
∫

0<u<
Rmax−Rt

ρR

ρRg
′
t (Rt + ρRu,Wt) [Ft(u+x)]

′
du−

∫
−ρERt<u≤0

1

ρE
g′t

(
Rt +

1

ρE
u,Wt

)
[Ft(u+x)]

′
du.

= −ρRg′t (Rt + ρRu,Wt)Ft(u+x)|
Rmax−Rt

ρR
u=0 +

∫
0<u<

Rmax−Rt
ρR

ρ2
Rg
′′
t (Rt + ρRu,Wt)Ft(u+x)du

− 1

ρE
g′t

(
Rt +

1

ρE
u,Wt

)
Ft(u+x)|0u=−ρERt +

∫
−ρERt<u≤0

1

ρ2
E

g′′t

(
Rt +

1

ρE
u,Wt

)
Ft(u+x)du,

using integration by parts. Then,

∂

∂x
E [V (St+1) | St, x]

= −ρRFt
(
x+

Rmax−Rt
ρR

)
g′t (Rmax,Wt) + ρRFt(x)g′t (Rt,Wt)

− 1

ρE
Ft(x)g′t (Rt,Wt) +

1

ρE
Ft(x− ρERt)g′t (0,Wt)

+

∫
0<u<

Rmax−Rt
ρR

ρ2
Rg
′′
t (Rt + ρRu,Wt)Ft(u+x)du

+

∫
−ρERt<u≤0

1

ρ2
E

g′′t

(
Rt +

1

ρE
u,Wt

)
Ft(u+x)du.

Therefore,

∂2

∂x2
E [V (St+1) | St, x]

=

∫
0<u<

Rmax−Rt
ρR

ρ2
Rg
′′
t (Rt + ρRu,Wt)ft(u+x)du+

∫
−ρERt<u≤0

1

ρ2
E

g′′t

(
Rt +

1

ρE
u,Wt

)
ft(u+x)du

+
1

ρE
ft(x− ρERt)g′t (0,Wt)−

1

ρE
(1− ρRρE)ft(x)g′t (Rt,Wt)− ρRft

(
x+

Rmax−Rt
ρR

)
g′t (Rmax,Wt)

= E

[(
∂Rt+1

∂x

)2
d

dR2
t+1

V (St+1) | St, x

]
+

1

ρE
ft(x− ρERt)g′t (0,Wt)

− 1

ρE
(1− ρRρE)ft(x)g′t (Rt,Wt)− ρRft

(
x+

Rmax−Rt
ρR

)
g′t (Rmax,Wt) .

Similarly,
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Lemma 2.2: ∀0≤ t≤ T − 1,

∂2

∂R2
t

V x
t (St, x) = E

[(
∂Rt+1

∂Rt

)2
d2

dR2
t+1

Vt+1(St+1) | St, x

]
+ ρEft (x− ρERt)g′t(0,Wt)

− 1

ρR
ft

(
x+

Rmax−Rt
ρR

)
g′t(Rmax,Wt). (12)

Proof : From (7),

∂

∂Rt
E [V (St+1) | St, x] =E

[
∂Rt+1

∂Rt
g′t(Rt+1,Wt) | St, x

]
=

∫
x<y<x+

Rmax−Rt
ρR

g′t (Rt + ρR (y−x) ,Wt)ft(y)dy+

∫
x−ρERt<y≤x

g′t

(
Rt−

1

ρE
(x− y) ,Wt

)
ft (y)dy

=

∫
0<u<

Rmax−Rt
ρR

g′t (Rt + ρRu,Wt)ft(u+x)du+

∫
−ρERt<u≤0

g′t

(
Rt +

1

ρE
u,Wt

)
ft (u+x)du

Therefore,

∂2

∂R2
t

E [V (St+1) | St, x] =
∂

∂Rt
E
[
∂Rt+1

∂Rt
g′t(Rt+1,Wt) | St, x

]
=

∫
−ρERt<u≤0

12 · g′′t
(
Rt +

1

ρE
u,Wt

)
ft (u+x)du+

∫
0<u<

Rmax−Rt
ρR

12 · g′′t (Rt + ρRu,Wt)ft(u+x)du

+ρEg
′
t (0,Wt)ft (x− ρERt)−

1

ρR
g′t (Rmax,Wt)ft

(
x+

Rmax−Rt
ρR

)
= E

[(
∂Rt+1

∂Rt

)2
d2

dR2
t+1

Vt+1(St+1) | St, x

]
+ ρEft (x− ρERt)g′t (0,Wt)−

1

ρR
ft

(
x+

Rmax−Rt
ρR

)
g′t (Rmax,Wt) .

Also,

Lemma 2.3: 0≤ t≤ T − 1,

∂2

∂Rt∂x
V x
t (St, x) = E

[
∂Rt+1

∂x

∂Rt+1

∂Rt

d2

dR2
t+1

Vt+1(St+1) | St, x
]
− ft (x− ρERt)g′t(0,Wt)

+ft

(
x+

Rmax−Rt
ρR

)
g′t(Rmax,Wt). (13)

Proof : From (7),

∂

∂Rt
E [V (St+1) | St, x] =E

[
∂Rt+1

∂Rt
g′t(Rt+1,Wt) | St, x

]
=

∫
x<y<x+

Rmax−Rt
ρR

g′t (Rt + ρR (y−x) ,Wt)ft(y)dy+

∫
x−ρERt<y≤x

g′t

(
Rt−

1

ρE
(x− y) ,Wt

)
ft (y)dy
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=

∫
0<u<

Rmax−Rt
ρR

g′t (Rt + ρRu,Wt)ft(u+x)du+

∫
−ρERt<u≤0

g′t

(
Rt +

1

ρE
u,Wt

)
ft (u+x)du

=

∫
0<u<

Rmax−Rt
ρR

g′t (Rt + ρRu,Wt) [Ft(u+x)]
′
du+

∫
−ρERt<u≤0

g′t

(
Rt +

1

ρE
u,Wt

)
[Ft (u+x)]

′
du

= g′t (Rt + ρRu,Wt)Ft(u+x)|
Rmax−Rt

ρR
u=0 −

∫
0<u<

Rmax−Rt
ρR

ρRg
′′
t (Rt + ρRu,Wt)Ft(u+x)du

+g′t

(
Rt +

1

ρE
u,Wt

)
Ft (u+x) |0u=−ρERt −

∫
−ρERt<u≤0

1

ρE
g′′t

(
Rt +

1

ρE
u,Wt

)
Ft (u+x)du

= g′t (Rmax,Wt)Ft

(
x+

Rmax−Rt
ρR

)
− g′t (0,Wt)Ft (x− ρERt)

−
∫

0<u<
Rmax−Rt

ρR

ρRg
′′
t (Rt + ρRu,Wt)Ft(u+x)du−

∫
−ρERt<u≤0

1

ρE
g′′t

(
Rt +

1

ρE
u,Wt

)
Ft (u+x)du.

Therefore,

∂2

∂x∂Rt
E [V (St+1) | St, x] =

∂

∂x
E
[
∂Rt+1

∂Rt
g′t(Rt+1,Wt) | St, x

]
= g′t (Rmax,Wt)ft

(
x+

Rmax−Rt
ρR

)
− g′t (0,Wt)ft (x− ρERt)

−
∫

0<u<
Rmax−Rt

ρR

1 · ρRg′′t (Rt + ρRu,Wt)ft(u+x)du−
∫

−ρERt<u≤0

1 · 1

ρE
g′′t

(
Rt +

1

ρE
u,Wt

)
ft (u+x)du

= E
[
∂Rt+1

∂x

∂Rt+1

∂Rt

d

dR2
t+1

Vt+1(St+1) | St, x
]
− ft (x− ρERt)g′t (0,Wt) + ft

(
x+

Rmax−Rt
ρR

)
g′t (Rmax,Wt) .

2.2. Additional Lemmas

We have defined all the derivatives we need, but before we move forward, we need two more lemmas.

First,

Lemma 2.4: If x∗t satisfies

∂

∂x
C(St, x

∗
t ) + γ

∂

∂x
V x
t (St, x

∗
t ) = 0,

then

d

dRt
Vt(St) = ρE [µp + (1−κ4τ) (pt−µp)] + γE

[(
ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt

)
d

dRt+1

Vt+1(St+1) | St, x∗t
]
.

(14)
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Proof : From (8),

d

dRt
Vt(St) =

d

dRt
C(St, x

∗
t ) + γ

d

dRt
V x
t (St, x

∗
t )

= ρE [µp + (1−κ4τ) (pt−µp)] +

(
dx∗t
dRt
− ρE

)
∂

∂x
C(St, x

∗
t ) + γ

∂

∂Rt
V x
t (St, x

∗
t ) + γ

dx∗t
dRt

∂

∂x
V x
t (St, x

∗
t )

= ρE [µp + (1−κ4τ) (pt−µp)] +
dx∗t
dRt

[
∂

∂x
C(St, x

∗
t ) + γ

∂

∂x
V x
t (St, x

∗
t )

]
−ρE ·

∂

∂x
C(St, x

∗
t ) + γ

∂

∂Rt
V x
t (St, x

∗
t )

= ρE [µp + (1−κ4τ) (pt−µp)] + γρE ·
∂

∂x
V x
t (St, x

∗
t ) + γ

∂

∂Rt
V x
t (St, x

∗
t ),

where we substituted

−ρE ·
∂

∂x
C(St, x

∗
t ) = γρE ·

∂

∂x
V x
t (St, x

∗
t ).

Then,

d

dRt
Vt(St) = ρE [µp + (1−κ4τ) (pt−µp)] + γE

[
ρE
∂Rt+1

∂x
· d

dRt+1

Vt+1(St+1)|St, x∗t
]

+γE
[
∂Rt+1

∂Rt
· d

dRt+1

Vt+1(St+1)|St, x∗t
]

= ρE [µp + (1−κ4τ) (pt−µp)] + γE
[(
ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt

)
d

dRt+1

Vt+1(St+1) | St, x∗t
]
.

�

Next,

Lemma 2.5: ∀0≤ t≤ T − 1, if C(St, x) + γV x
t (St, x) is a concave function of (Rt, x) , then

Vt(St) = max
x∈R+

{C(St, x) + γV x
t (St, x)} (15)

is a concave function of Rt.

Proof: This follows from pp.87-88 of Boyd and Vandenberghe (2004).

2.3. Backward Induction:

We prove the structural results using backward induction. From (9) and (10),

ρE [µp + (1−κ4τ) (pT −µp)]≤
d

dRT
VT (ST )≤ 1

ρR
[µp + (1−κ4τ) (pT −µp)]
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and

d2

dR2
T

VT (ST )≤ 0.

Therefore, we can assume

ρE [µp + (1−κ4τ) (pt+1−µp)]≤
d

dRt+1

Vt+1(St+1)≤ 1

ρR
[µp + (1−κ4τ) (pt+1−µp)] (16)

and

d2

dR2
t+1

Vt+1(St+1)≤ 0, (17)

for some t≤ T − 1. From (16) and (5) we know that

ρE

[
µp + (1−κ4τ)

2
(pt−µp)

]
≤ g′t(0,Wt), g

′
t(Rt,Wt), g

′
t(Rmax,Wt)

≤ 1

ρR

[
µp + (1−κ4τ)

2
(pt−µp)

]
step 1) From (3), (4), (5), (11), (12), and (13), we can show that

[
z1 z2

][ ∂2

∂x2
C(St, x) + γ ∂2

∂x2
V x
t (St, x) ∂2

∂x∂Rt
C(St, xt) + γ ∂2

∂x∂Rt
V x
t (St, x)

∂2

∂x∂Rt
C(St, xt) + γ ∂2

∂x∂Rt
V x
t (St, x) ∂2

∂R2
t
C(St, x) + γ ∂2

∂R2
t
V x
t (St, x)

][
z1

z2

]
= z2

1

(
∂2

∂x2
C(St, x) + γ

∂2

∂x2
V x
t (St, x)

)
+ 2z1z2

(
∂2

∂x∂Rt
C(St, xt) + γ

∂2

∂x∂Rt
V x
t (St, x)

)
+z2

2

(
∂2

∂R2
t

C(St, x) + γ
∂2

∂R2
t

V x
t (St, x)

)
= E

[
γ

(
z1

∂Rt+1

∂x
+ z2

∂Rt+1

∂Rt

)2
d2

dR2
t+1

Vt+1(St+1) | St, x

]
−
(
mpt,t+1 + b− γ 1

ρE
g′t(0,Wt)

)
ft(x− ρERt) (z1− ρEz2)

2

−γ 1

ρE
z2

1 (1− ρRρE)ft(x)g′t(Rt,Wt)− γρRft
(
x+

Rmax−Rt
ρR

)
g′t(Rmax,Wt)

(
z1−

1

ρR
z2

)2

,

∀z1, z2 ∈R. However, from (17),

E

[(
z1

∂Rt+1

∂x
+ z2

∂Rt+1

∂Rt

)2
d2

dR2
t+1

Vt+1(St+1) | St, x

]
≤ 0.

Next, since

m≥ γ

ρEρR
, b≥ γ

ρEρR
µp,

and

γ
1

ρE
g′t(0,Wt) ≤

γ

ρEρR

[
µp + (1−κ4τ)

2
(pt−µp)

]
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=
γ

ρEρR

[
(1−κ4τ)µp + (1−κ4τ)

2
(pt−µp) +κ4τµp

]
=

(1−κ4τ)γ

ρEρR
[µp + (1−κ4τ) (pt−µp)] +

γκ4τ
ρEρR

µp

≤ mpt,t+1 + b,

mpt,t+1 + b− γ 1

ρE
g′t(0,Wt)≥ 0.

Therefore, the Hessian of C(St, x) + γV x
t (Sxt ) shown above is a negative semi-definite matrix,

implying that C(St, x) + γV x
t (Sxt ) is a concave function of (Rt, x).

step 2) If xt = 0, Ŷt+1 ≥ xt since Ŷt+1 ≥ 0. Therefore, from (6),

∂Rt+1

∂x
≥−ρR, if xt = 0.

Since

ρE [µp + (1−κ4τ) (pt+1−µp)]≤
d

dRt+1

Vt+1(St+1)≤ 1

ρR
[µp + (1−κ4τ) (pt+1−µp)] ,

E
[
∂Rt+1

∂x

d

dRt+1

Vt+1(St+1) | St,0
]
≥− [µp + (1−κ4τ) (pt−µp)] .

Therefore,

∂

∂x
C(St,0) + γ

∂

∂x
V x
t (St,0)

= − (mpt,t+1 + b)Ft(−ρERt) + pt,t+1 + γE
[
∂Rt+1

∂x

d

dRt+1

Vt+1(St+1) | St,0
]

= pt,t+1 + γE
[
∂Rt+1

∂x

d

dRt+1

Vt+1(St+1) | St,0
]

> pt,t+1− γpt,t+1 = 0. (18)

Next, since pt,t+1 <mpt,t+1 + b, ∃xUt <∞ such that

Ft(x
U
t − ρERT ) =

pt,t+1

mpt,t+1 + b
.

Therefore,

∂

∂x
C(St, x

U
t ) =− (mpt,t+1 + b)Ft(x

U
t − ρERt) + pt,t+1 = 0.
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Moreover, we know that

∂

∂x
V x
t (St, x) =E

[
∂Rt+1

∂x

d

dRt+1

Vt+1(St+1) | St, x
]
≤ 0, ∀x,

since

∂Rt+1

∂x
≤ 0 and

d

dRt+1

Vt+1(St+1)≥ 0.

Therefore,

∂

∂x
C(St, x

U
t ) + γ

∂

∂x
V x
t (St, x

U
t )≤ 0. (19)

Since C(St, x) + γV x
t (Sxt ) is a concave function of x, from (18) and (19),we know that ∃0< x∗t ≤

xUt <∞ such that

∂

∂x
C(St, x

∗
t ) + γ

∂

∂x
V x
t (St, x

∗
t ) = 0,

and it is the optimal decision at time t.

step 3) Since C(St, x) + γV x
t (Sxt ) is a concave function of (Rt, x) and

x∗t = arg max
x∈R+

{C(St, x) +V x
t (St, x)}

is the point where the derivative of C(St, x) + γV x
t (St, x) with respect to x is zero, from (14) and

(15), it immediately follows that

d

dRt
Vt(St) = ρE [µp + (1−κ4τ) (pt−µp)] (20)

+γE
[(
ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt

)
d

dRt+1

Vt+1(St+1) | St, x∗t
]
,

and

Vt(St) =C(St, x
∗
t ) + γV x

t (St, x
∗
t )

is a concave function of Rt.

step 4) From (6) and (7),

0≤ ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt
≤ 1− ρEρR.
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Since

ρE [µp + (1−κ4τ) (pt+1−µp)]≤
d

dRt+1

Vt+1(St+1)≤ 1

ρR
[µp + (1−κ4τ) (pt+1−µp)] ,

0≤ γE
[(
ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt

)
d

dRt+1

Vt+1(St+1) | St, x∗t
]
≤ (1− ρEρR)

ρR
[µp + (1−κ4τ) (pt−µp)] .

Then, from (20),

ρE [µp + (1−κ4τ) (pt−µp)] ≤
d

dRt
Vt(St)≤

[
ρE +

1

ρR
(1− ρEρR)

]
[µp + (1−κ4τ) (pt−µp)]

=
1

ρR
[µp + (1−κ4τ) (pt−µp)] .

In summary, by assuming

ρE [µp + (1−κ4τ) (pt+1−µp)]≤
d

dRt+1

Vt+1(St+1)≤ 1

ρR
[µp + (1−κ4τ) (pt+1−µp)]

and Vt+1(St+1) is a concave function of Rt+1, we were able to prove that

ρE [µp + (1−κ4τ) (pt−µp)]≤
d

dRt
Vt(St)≤

1

ρR
[µp + (1−κ4τ) (pt−µp)] ,

and Vt(St) is a concave function of Rt. Since

d

dRT
VT (ST ) = ρE [µp + (1−κ4τ) (pT −µp)] and

d2

dR2
T

VT (ST ) = 0,

by induction, the above results are true for all 0≤ t≤ T −1. Then, from step 1, step 2, and step

3, it follows that C(St, x) + γV x
t (St, x) is a concave function of (Rt, x) , the optimal decision x∗t is

positive and finite and it is the point where the derivative of C(St, x) + γV x
t (St, x) with respect to

x is zero, and

d

dRt
Vt(St) = ρE [µp + (1−κ4τ) (pt−µp)] + γE

[(
ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt

)
d

dRt+1

Vt+1(St+1) | St, x∗t
]
,

for all 0≤ t≤ T − 1.
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3. Proof of (18):

Since

d

dRT
VT (ST ) = ρE [µp + (1−κ4τ) (pT −µp)]

from (9), x∗T−1 must satisfy

∂

∂x
C(ST−1, x

∗
T−1) + ρE

[
µp + (1−κ4τ)

2
(pT−1−µp)

]
E
[
γ
∂RT
∂x
|ST−1, x

∗
T−1

]
= pT,T−1− (mpT,T−1 + b)

1

β
(x∗T−1− ρERT−1− θT−1)− [(1−κ4τ)pT,T−1 +κ4τµp]

1

β
γρERmax

= 0.

Therefore,

x∗T−1− ρERT−1− θT−1 = β
pT,T−1− pT,T−1

[
(1−κ4τ) +κ4τ µp

pT,T−1

]
1
β
γρERmax

(mpT,T−1 + b)

= β
pT,T−1

mpT,T−1 + b

(
1− (1−κ4τ)

1

β
ρERmax−κ4τ

µp
pT,T−1

1

β
γρERmax

)
=

pT,T−1

mpT,T−1 + b

(
β−

(
(1−κ4τ) +κ4τ µp

pT,T−1

)
γρERmax

)
.

By manually computing the marginal value function and the optimal decision backward through

time, one can show that given ST = ST−1 = ST−2 = ...= S0,

x∗T − θT ≥ x∗T−1− θT−1 ≥ x∗T−2− θT−2 ≥ ...≥ x∗0− θ0.

Since θt is the amount of electricity we are certain to produce during the time interval [t, t+ 1) ,

we refer to x∗t − θt, the commitment over θt, as the extra-commitment, ∀t. Smaller the remaining

time period until the end of the horizon, greater the extra-commitment must be such that we do

not squander energy in storage by missing the opportunity to sell. If there is more time remaining

and more opportunity to sell energy in the future, we can commit less now and reduce the risk of

over-commitment. Therefore, the extra-commitment we make in the infinite horizon setting will

always be less than the extra-commitment we make in the finite horizon setting, if everything else

is equal.
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Let x∗t − θt be the extra commitment we make in the infinite horizon setting at some time

t given that the state is St. Next, let x∗T−1 − θT−1 be the extra commitment we make in the

finite horizon setting at time T − 1 where T denotes the end of the horizon. Then, we know that

x∗t − θt ≤ x∗T−1− θT−1 if St = ST−1. Next, from (10),

pT,T−1Rmax (m− ρEρRγ (1−κ4τ))≤ ρRβ (m− 1)pT,T−1

and

Rmax (b+ γρEρRκ4τµp)≤ bρRβ.

Then,

pT,T−1Rmax (m− ρEρRγ (1−κ4τ)) +Rmax (b+ ρEρRγκ4τµp)≤ ρRβ (m− 1)pT,T−1 + bρRβ,

which can be written as

Rmax

(
mpT,T−1 + b− ρEρRpT,T−1γ

(
(1−κ4τ) +κ4τ µp

pT,T−1

))
≤ ρRβ (mpT,T−1 + b− pT,T−1) .

Therefore,

Rmax

ρR

(
1− ρEρR

pT,T−1

mpT,T−1 + b
γ

(
(1−κ4τ) +κ4τ µp

pT,T−1

))
≤ β

(
1− pT,T−1

mpT,T−1 + b

)
.

Then,

x∗T−1− θT−1 +
Rmax−RT−1

ρR

=
pT,T−1

mpT,T−1 + b
β− pT,T−1

mpT,T−1 + b
γ

(
(1−κ4τ) +κ4τ µp

pT,T−1

)
ρERmax + ρERT−1 +

Rmax−RT−1

ρR

=
pT,T−1

mpT,T−1 + b
β+

Rmax

ρR

(
1− ρEρR

pT,T−1

mpT,T−1 + b
γ

(
(1−κ4τ) +κ4τ µp

pT,T−1

))
− (1− ρEρR)RT−1

ρR

≤ pT,T−1

mpT,T−1 + b
β+

Rmax

ρR

(
1− ρEρR

pT,T−1

mpT,T−1 + b
γ

(
(1−κ4τ) +κ4τ µp

pT,T−1

))
≤ pT,T−1

mpT,T−1 + b
β+β

(
1− pT,T−1

mpT,T−1 + b

)
.

= β

If St = ST−1,

x∗t +
Rmax−Rt

ρR
≤ θt +β.
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4. Proof of (19):

Proof : We prove the theorem by using backward induction in the finite horizon setting and letting

T go to infinity. First, we make the induction hypothesis that

d

dRT−i
VT−i(ST−i) = ρEµp

i∑
j=0

1

j!

[
γ (1− ρRρE)

1

β

(
Rmax−RT−i

ρR

)]j
(21)

+ρE (pT−i−µp) (1−κ4τ)
i∑

j=0

1

j!

[
γ (1−κ4t) (1− ρRρE)

1

β

(
Rmax−RT−i

ρR

)]

for some i≥ 0, and prove that

d

dRT−(i+1)

VT−(i+1)(ST−(i+1)) = ρEµp

i+1∑
j=0

1

j!

[
γ (1− ρRρE)

1

β

(
Rmax−RT−i

ρR

)]j

+ρE
(
pT−(i+1)−µp

)
(1−κ4τ)

i+1∑
j=0

1

j!

[
γ (1−κ4t) (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j
.

From (9), we know that

d

dRT
VT (ST ) = ρEµp + ρE (pT −µp) (1−κ4τ) .

Therefore, the expression for d
dRT−i

VT−i(ST−i) shown above is true for i= 0. From (2), we can

subtract Rt+1 from Rmax and divide by ρR to get

Rmax−Rt+1

ρR
=


0, if Rt + ρR (Yt+1−xt)≥Rmax.

Rmax−Rt
ρR

− (Yt+1−xt) , if xt <Yt+1, Rt + ρR (Yt+1−xt)<Rmax.
Rmax−Rt

ρR
+ 1

ρRρE
(xt−Yt+1) , if Yt+1 ≤ xt <ρERt +Yt+1.

Rmax
ρR

, if xt ≥ ρERt +Yt+1.

Next, from (2), we know that

ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt
=


0, if Rt + ρR (Yt+1−x)≥Rmax.

1− ρEρR, if x< Yt+1, Rt + ρR (Yt+1−x)<Rmax.
0, if Yt+1 ≤ x< ρERt +Yt+1.
0, if x≥ ρERt +Yt+1.

.

Therefore,

(
ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt

)
1

j!

(
Rmax−Rt+1

ρR

)j
|x=x∗t

=

{
(1− ρEρR) 1

j!

[
Rmax−Rt

ρR
− (Yt+1−x∗t )

]j
, if x∗t <Yt+1, Rt + ρR (Yt+1−x∗t )<Rmax.

0, otherwise.
.
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Next, by (18),

ft(y) =
1

β
, ∀x∗t ≤ y≤ x∗t +

Rmax−Rt
ρR

.

Therefore,

E

[(
ρE
∂Rt+1

∂x
+
∂Rt+1

∂Rt

)
1

j!

(
Rmax−Rt+1

ρR

)j
| St, x∗t

]

= (1− ρEρR)
1

j!

∫
x∗t≤y≤x

∗
t+

Rmax−Rt
ρR

[
Rmax−Rt

ρR
− (y−x∗t )

]j
ft(y)dy

= (1− ρEρR)
1

β

1

j!

∫
0≤u≤Rmax−Rt

ρR

(
Rmax−Rt

ρR
−u
)j
du

= (1− ρEρR)
1

β

1

(j+ 1)!

(
Rmax−Rt

ρR

)j+1

. (22)

Then, from Structural Result 3 and (22),

d

dRT−(i+1)

VT−(i+1)(ST−(i+1))

= ρE
(
µp + (1−κ4τ)

(
pT−(i+1)−µp

))
+ γE

[(
ρE
∂RT−i
∂x

+
∂RT−i

∂RT−(i+1)

)
d

dRT−i
VT−i(ST−i) | ST−(i+1), x

∗
T−(i+1)

]
= ρE

(
µp + (1−κ4τ)

(
psT−(i+1)−µp

))
+ ρEµp

i∑
j=0

1

(j+ 1)!

[
γ (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j+1

+ρE
(
pT−(i+1)−µp

)
(1−κ4τ)

i∑
j=0

1

(j+ 1)!

[
γ (1−κ4τ) (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j+1

= ρEµp + ρEµp

i+1∑
j=1

1

j!

[
γ (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j
+ ρE

(
pT−(i+1)−µp

)
(1−κ4τ)

+ρE
(
pT−(i+1)−µp

)
(1−κ4τ)

i+1∑
j=1

1

j!

[
γ (1−κ4τ) (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j

= ρEµp

i+1∑
j=0

1

j!

[
γ (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j

+ρE
(
pT−(i+1)−µp

)
(1−κ4τ)

i+1∑
j=0

1

j!

[
γ (1−κ4τ) (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j
Therefore, (21) is true for ∀i≥ 0. Next, substitute t for T − (i+ 1) . Then,

d

dRt
Vt(St) = ρEµp

T−t∑
j=0

1

j!

[
γ (1− ρRρE)

1

β

(
Rmax−Rt

ρR

)]j
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+ρE (pt−µp) (1−κ4τ)
T−t∑
j=0

1

j!

[
γ (1−κ4τ) (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j
,

∀t≤ T. If we let T go to infinity,

d

dRt
V (St) = lim

T−→∞

d

dRt
Vt(St)

= ρEµp lim
T−→∞

T−t∑
j=0

1

j!

[
γ (1− ρRρE)

1

β

(
Rmax−Rt

ρR

)]j

+ρE (pt−µp) (1−κ4τ) lim
T−→∞

T−t∑
j=0

1

j!

[
γ (1−κ4τ) (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j

= ρEµp

∞∑
j=0

1

j!

[
γ (1− ρRρE)

1

β

(
Rmax−Rt

ρR

)]j
+ρE (pt−µp) (1−κ4τ)

∞∑
j=0

1

j!

[
γ (1−κ4τ) (1− ρRρE)

1

β

(
Rmax−RT−(i+1)

ρR

)]j
= ρEµp exp

[
γ (1− ρRρE)

1

β

(
Rmax−Rt

ρR

)]
+ρE (pt−µp) (1−κ4τ) exp

[
γ (1−κ4τ) (1− ρRρE)

1

β

(
Rmax−Rt

ρR

)]
, ∀t.

5. Proof of (21):

From (2) and (6),

∂Rt+1

∂x
exp

[
γ (1− ρRρE)

1

β

(
Rmax−Rt+1

ρR

)]

=


0, if Rt + ρR (Yt+1−x)≥Rmax.

−ρR exp
[
γ (1− ρRρE) 1

β

(
Rmax−Rt

ρR
− (Yt+1−x)

)]
, if x< Yt+1, Rt + ρR (Yt+1−x)<Rmax.

− 1
ρE

exp
[
γ (1− ρRρE) 1

β

(
Rmax−Rt

ρR
+ 1

ρRρE
(x−Yt+1)

)]
, if Yt+1 ≤ x< ρERt +Yt+1.

0, if x≥ ρERt +Yt+1.

.

Therefore,

E
[
∂Rt+1

∂x
exp

[
γ (1− ρRρE)

1

β

(
Rmax−Rt+1

ρR

)]
| St, x

]
= −ρR

∫
x≤y≤x+

Rmax−Rt
ρR

exp

[
γ (1− ρRρE)

1

β

(
Rmax−Rt

ρR
− (y−x)

)]
ft (y)dy

− 1

ρE

∫
x−ρERt≤y≤x

exp

[
γ (1− ρRρE)

1

β

(
Rmax−Rt

ρR
− 1

ρRρE
(y−x)

)]
ft (y)dy



Kim and Powell: Optimal Energy Commitments with Storage and Intermittent Supply
Article submitted to Operations Research; manuscript no. OPRE-2009-09-406 19

= −ρR
1

β

∫
0≤u≤Rmax−Rt

ρR

exp

[
γ (1− ρRρE)

1

β

(
Rmax−Rt

ρR
−u
)]

du

− 1

ρE

1

β

∫
−ρERt≤u≤0

exp

[
γ (1− ρRρE)

1

β

(
Rmax−Rt

ρR
− 1

ρRρE
u

)]
du

=
ρR

1− ρRρE
exp

[
γ (1− ρRρE)

1

β

(
Rmax−Rt

ρR
−u
)]
|
Rmax−Rt

ρR
u=0

+
ρR

1− ρRρE
exp

[
γ (1− ρRρE)

1

β

(
Rmax−Rt

ρR
− 1

ρRρE
u

)]
|0u=−ρERt

= − ρR
1− ρRρE

(
exp

[
γ (1− ρRρE)

1

β

Rmax

ρR

]
− 1

)
, ∀x≥ ρERt + θt.

Similarly, we can show that

E
[
∂Rt+1

∂x
exp

[
γ (1−κ4t) (1− ρRρE)

1

β

(
Rmax−Rt+1

ρR

)]
| St, x

]
= − ρR

1− ρRρE

(
exp

[
γ (1−κ4t) (1− ρRρE)

1

β

Rmax

ρR

]
− 1

)
, ∀x≥ ρERt + θt

Therefore,

E
[
∂Rt+1

∂x

d

dRt+1

V (St+1) | St, x
]

= −µp
ρRρE

1− ρRρE

(
exp

[
γ (1− ρRρE)

1

β

Rmax

ρR

]
− 1

)
− (pt−µp) (1−κ4τ)

2 ρRρE
1− ρRρE

(
exp

[
γ (1−κ4τ) (1− ρRρE)

1

β

Rmax

ρR

]
− 1

)
,

∀x≥ ρERt + θt.

6. Proof of (26):

From (16),

x∗t = ρERt + θt +Ztβ.

Then, from (2),

P [Rt+1 = 0 | Rt,Zt] =
1

β
(x∗t − ρERt− θt) =Zt

and

P [Rt+1 = 0 | Rt] = E [Zt] =Z1
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= P [Rt+1 = 0 ]

= P [Rt = 0 ] ,

in the steady-state. Similarly,

P [Rt+1 =Rmax | Rt,Zt]

= 1− 1

β

(
x∗t +

Rmax−Rt
ρR

− θt
)

= 1− 1

β

(
ρERt +Ztβ+

Rmax−Rt
ρR

)
= 1−Zt−

Rmax

ρRβ
+

(1− ρEρR)Rt
ρRβ

and

P [Rt+1 =Rmax | Rt]

= 1−Z1−
Rmax

ρRβ
+

(1− ρEρR)Rt
ρRβ

,

in the steady-state. Moreover,

fRt+1|Rt (u|Rt) =

{ ρE
β

if 0<u<Rt
1

ρRβ
if Rt ≤ u<Rmax

.

Therefore, we can write the conditional probability density function as

fRt+1|Rt (u|Rt = r) = Z1δ (u) +
ρE
β

1{0≤u<r}+
1

ρRβ
1{r≤u≤Rmax}

+

(
1−Z1−

Rmax

ρRβ
+

(1− ρEρR) r

ρRβ

)
δ (u−Rmax) , (23)

where δ (·) denotes the Dirac-delta function. Since

P [Rt = 0] =Z1,

we know that the stationary distribution can be written as

fRt (r) =Z1δ (r) + g (r)1{0≤r≤Rmax}+

1−Z1−
Rmax∫
r=0

g (r)dr

 δ (r−Rmax) , (24)
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for some function g (r) . By definition, the stationary distribution must satisfy

fRt+1
(u) =

Rmax∫
r=0

fRt+1,Rt (u, r)dr=

Rmax∫
r=0

fRt+1|Rt (u|Rt = r)fRt (r)dr= fRt (u) .

Now we want to compute the integral

Rmax∫
r=0

fRt+1|Rt (u|Rt = r)fRt (r)dr,

using (23) and (24). Since there are two many terms in the equation, we separate the computation

into three steps corresponding to the three terms in (24). Then, in the fourth step, we combine the

terms corresponding to 1{0≤r≤Rmax} to compute g (·) .

Step 1)

Z1

Rmax∫
r=0

fRt+1|Rt (u|Rt = r) δ (r)dr

= Z1fRt+1|Rt (u|Rt = 0)

= Z
2

1δ (u) +
Z1

ρRβ
1{0≤u≤Rmax}+Z1

(
1−Z1−

Rmax

ρRβ

)
δ (u−Rmax) (25)

Step 2) 1−Z1−
Rmax∫
r=0

g (r)dr

 Rmax∫
r=0

fRt+1|Rt (u|Rt = r) δ (r−Rmax)dr

=

1−Z1−
Rmax∫
r=0

g (r)dr

fRt+1|Rt (u|Rt =Rmax)

=

1−Z1−
Rmax∫
r=0

g (r)dr

Z1δ (u) +

1−Z1−
Rmax∫
r=0

g (r)dr

 ρRρE
ρRβ

1{0≤u≤Rmax}

+

1−Z1−
Rmax∫
r=0

g (r)dr

(1−Z1−
ρEρRRmax

ρRβ

)
δ (u−Rmax) . (26)

Step 3)

Rmax∫
r=0

fRt+1|Rt (u|Rt = r)g(r)dr
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=

[
Z1δ (u) +

(
1−Z1−

Rmax

ρRβ

)
δ (u−Rmax)

]
·
Rmax∫
r=0

g(r)dr (27)

+δ (u−Rmax)
(1− ρEρR)

ρRβ

Rmax∫
r=0

rg(r)dr+

ρE
β

Rmax∫
r=u

g(r)dr+
1

ρRβ

u∫
r=0

g(r)dr

1{0≤u≤Rmax}.

Step 4) Collecting the 1{0≤u≤Rmax} terms from (25), (26), (27), we get

Z1

ρRβ
+

1−Z1−
Rmax∫
r=0

g (r)dr

 ρRρE
ρRβ

+
ρE
β

Rmax∫
r=u

g(r)dr+
1

ρRβ

u∫
r=0

g(r)dr

=
Z1 (1− ρRρE)

ρRβ
+
ρRρE
ρRβ

− ρRρE
ρRβ

u∫
r=0

g (r)dr+
1

ρRβ

u∫
r=0

g(r)dr

=
Z1 (1− ρRρE)

ρRβ
+
ρRρE
ρRβ

+
(1− ρRρE)

ρRβ

u∫
r=0

g (r)dr (28)

= g(u).

Taking the derivative with respect to u on both side gives

g′(u) =
(1− ρRρE)

ρRβ
g(u).

Therefore,

g (u) = a exp

[
(1− ρEρR)

ρRβ
u

]
for some constant a. Since

(1− ρEρR)

ρRβ

u∫
r=0

g (r)dr= a exp

[
(1− ρEρR)

ρRβ
u

]
− a,

from (28),

a =
Z1

ρRβ
(1− ρRρE) +

ρRρE
ρRβ

=

(
Z1 +

ρRρE
1− ρRρE

)
(1− ρRρE)

ρRβ
.

Next,

Rmax∫
r=0

g (r)dr =

(
Z1 +

ρRρE
1− ρEρR

)(
exp

[
(1− ρEρR)

ρRβ
Rmax

]
− 1

)
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=

(
Z1 +

ρRρE
1− ρEρR

)
exp

[
(1− ρEρR)

ρRβ
Rmax

]
−Z1−

ρRρE
1− ρEρR

.

Then,

1−Z1−
Rmax∫
r=0

g (r)dr

=
1

1− ρEρR
−
(
Z1 +

ρRρE
1− ρEρR

)
exp

[
(1− ρEρR)

ρRβ
Rmax

]
=

1

1− ρEρR

(
1− ρRρE exp

[
(1− ρEρR)

ρRβ
Rmax

])
−Z1 exp

[
(1− ρEρR)

ρRβ
Rmax

]
=

1

1− ρEρR

(
1−

(
ρRρE +Z1 (1− ρEρR)

)
exp

[
(1− ρEρR)

ρRβ
Rmax

])
Therefore,

fRt (r) = Z1δ (r) +

(
Z1 +

ρRρE
1− ρRρE

)
(1− ρRρE)

ρRβ
exp

[
(1− ρEρR)

ρRβ
r

]
1{0≤r≤Rmax}

+
1

1− ρEρR

(
1−

(
ρRρE +Z1 (1− ρEρR)

)
exp

[
(1− ρEρR)

ρRβ
Rmax

])
δ (r−Rmax) .

7. Proof of (28):

From (4) and (16),

C(St, x
∗
t ) = pt,t+1x

∗
t − (mpt,t+1 + b) ·

∫
0≤y≤x∗t−ρERt

Ft(y)dy

= pt,t+1x
∗
t − (mpt,t+1 + b)

1

β
·

∫
θt≤y≤x∗t−ρERt

(y− θt)dy

= pt,t+1x
∗
t − (mpt,t+1 + b)

1

2β
(x∗t − ρERt− θt)

2

= pt,t+1 (ρERt + θt +Ztβ)− (mpt,t+1 + b)
β

2
Z2
t

= [µp + (1−κ4τ) (pt−µp)] (ρERt + θt +Ztβ)

− (m [µp + (1−κ4τ) (pt−µp)] + b)
β

2
Z2
t

From (26), the stationary expectation of the storage level is given by

E [Rt] =

Rmax∫
r=0

rfRt (r)dr
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= Rmax

1

1− ρEρR

(
1−

(
ρRρE +Z1 (1− ρEρR)

)
exp

[
(1− ρEρR)

ρRβ
Rmax

])

+

(
Z1 +

ρRρE
1− ρRρE

) Rmax∫
r=0

r
(1− ρRρE)

ρRβ
exp

[
(1− ρRρE)

ρRβ
r

]
dr

= Rmax

1

1− ρEρR

(
1−

(
ρRρE +Z1 (1− ρEρR)

)
exp

[
(1− ρEρR)

ρRβ
Rmax

])
+

(
Z1 +

ρRρE
1− ρRρE

)
r exp

[
(1− ρRρE)

ρRβ
r

]
|Rmax
r=0

−
(
Z1 +

ρRρE
1− ρRρE

) Rmax∫
r=0

exp

[
(1− ρRρE)

ρRβ
r

]
dr

=
Rmax

1− ρRρE
−
(
Z1 +

ρRρE
1− ρRρE

) Rmax∫
r=0

exp

[
(1− ρRρE)

ρRβ
r

]
dr

=
Rmax

1− ρRρE
−
(
Z1 +

ρRρE
1− ρRρE

)
ρRβ

1− ρRρE

(
exp

[
(1− ρRρE)

ρRβ
Rmax

]
− 1

)
.

Then, in steady-state,

E [C (St, x
∗
t )] = µpρEE [Rt] +µpE [θt] +µpZ1β− (mµp + b)

β

2
Z2

=
µpρERmax

1− ρRρE
−µpβ

(
Z1 +

ρRρE
1− ρRρE

)
ρEρR

1− ρRρE

(
exp

[
(1− ρRρE)

ρRβ
Rmax

]
− 1

)
+µpβ

(
Z1−m

Z2

2
− 1

2

)
+µpµY − bβ

Z2

2
.
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